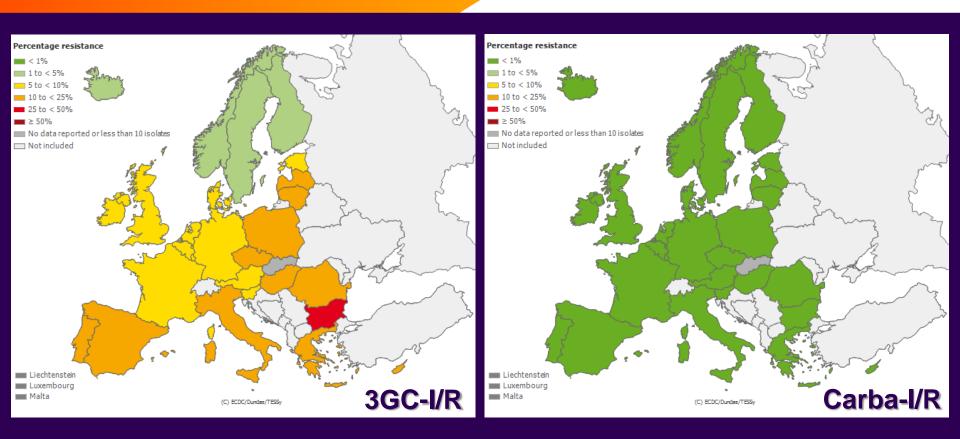
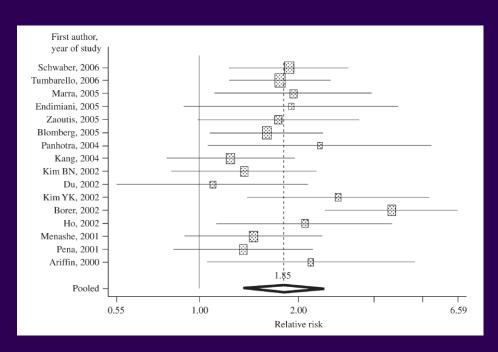
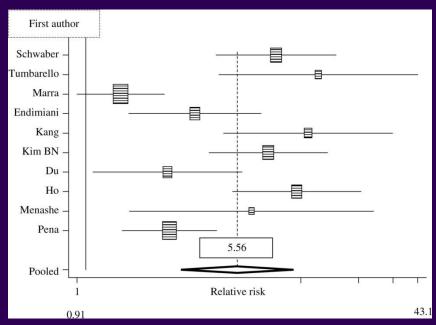
The complex and diverse epidemiologies of ESBLs and carbapenemases


Neil Woodford

HPA – ARMRL - Colindale

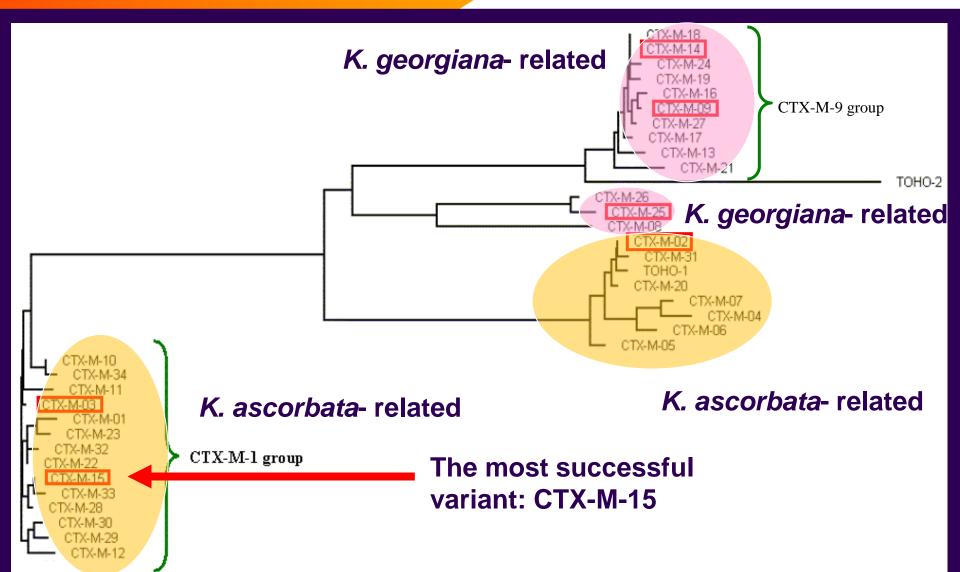
E. coli, 2010 (Ears-Net)




• In the UK:

- c. 30,000 cases *E. coli* bacteraemia p.a.
- c. 6.5 % CTX and/or CAZ resistance = c. 2000 cases p.a

ESBL vs. non-ESBL bacteraemia



Mortality

Delayed appropriate Rx

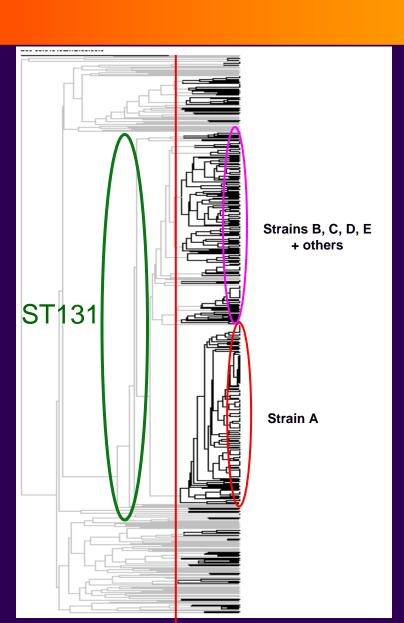
A multitude of CTX-M ESBLs

The UK's CTX-M problem

~1500 CTX-M-producing E. coli analysed

- 91% contain alleles encoding group 1 enzymes (mainly CTX-M-15)
 - massive clonal spread
- 8.5% contain alleles encoding group 9 enzymes
 - diverse strains, some intra-centre strain spread
- 8 isolates contain an allele encoding group 2 enzymes
- 1 isolate contains an allele encoding a group 8 enzyme

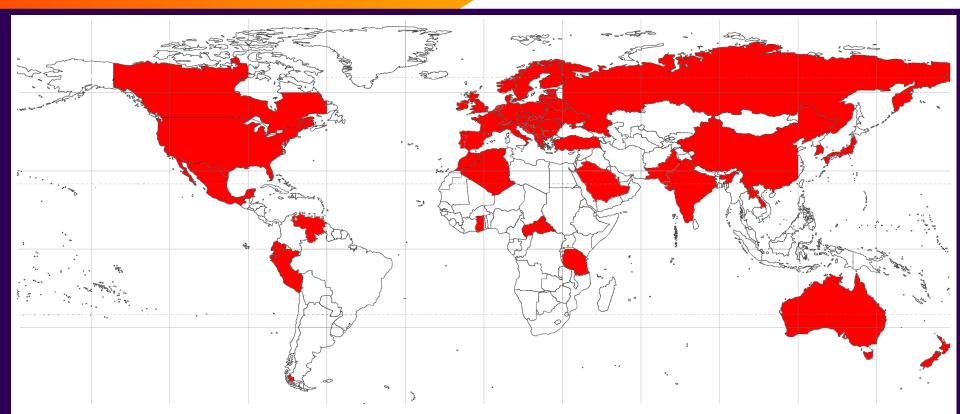
Which *E. coli* clones cause UTI?



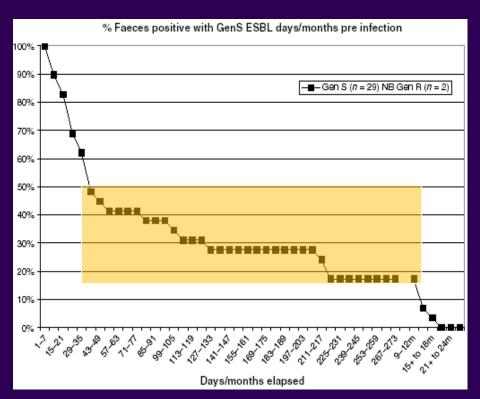

ST	UTIs (n=300)*
73	16.6%
95	6.3%
131	12.3%
12	0.7%
127	3.6%
69	9.0%
Other	51.5% (97 STs)

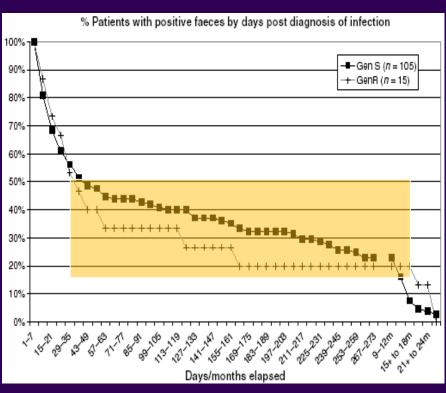
^{*} Gibreel et al. JAC 2012; 67: 346-56

ST131 and spread of CTX-M-15-producing *E. coli* in the UK



O25-H4:ST131 *E. coli*: a global clone

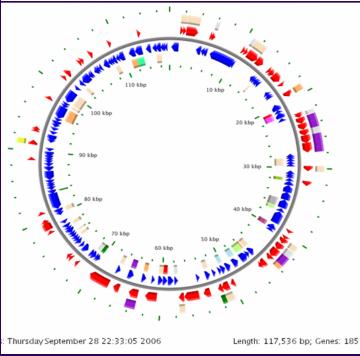



PFGE sub-divides the lineage and allows local epidemiological investigations

Nicholas-Chanoine *et al. JAC* 2008, **61,** 273 Coque *et al. EID* 2008 **14,** 195 Lau *et al JAC* 2008; **62**: 1241-4

Prolonged faecal carriage of ST131 variants: UK strains A & D



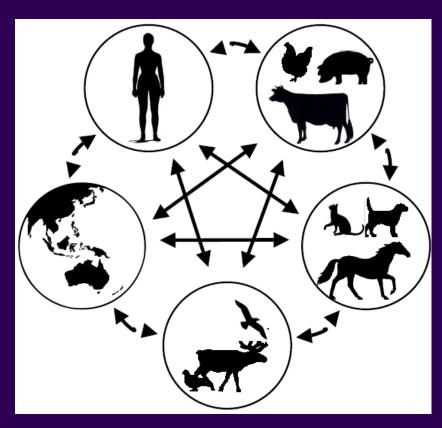

- Potential for persistence in community settings
- 50% colonized for up to 1 month
- 30% colonized between 1 12 months

Multi-resistance plasmids help to spread CTX-M -15 ESBL

Antibiotic classes	Genes	Mechanism
Aminoglycosides	aac6'-lb-cr	Modify drug
Ammogrycosides	aadA5	Wodify drug
	bla _{CTX-M-15}	
β-lactams	bla _{OXA-1}	Destroy drug
	bla _{TEM-1}	
Chloramphenicol	catB4	Modify drug
Macrolides	mph(A)	Efflux
Fluoroquinolones	aac6'-lb-cr	Modify drug
Sulfonamides	sull	By-pass
Trimethoprim	dhfr _{XVII}	By-pass
Tetracycline	tet(A)	Efflux

Woodford, Carattoli et al. AAC

The biogeography / ecology of resistance is complex



Success of the gene

- Good promoter
- Mobilizing agent (IS)
- Successful plasmid carrier

Success of the clone or strain

- Prevalence
- Virulence potential
- Locally, nationally or internationally
- Often poorly understood

Stokes & Gillings, FEMS Microbiol Rev, 2011

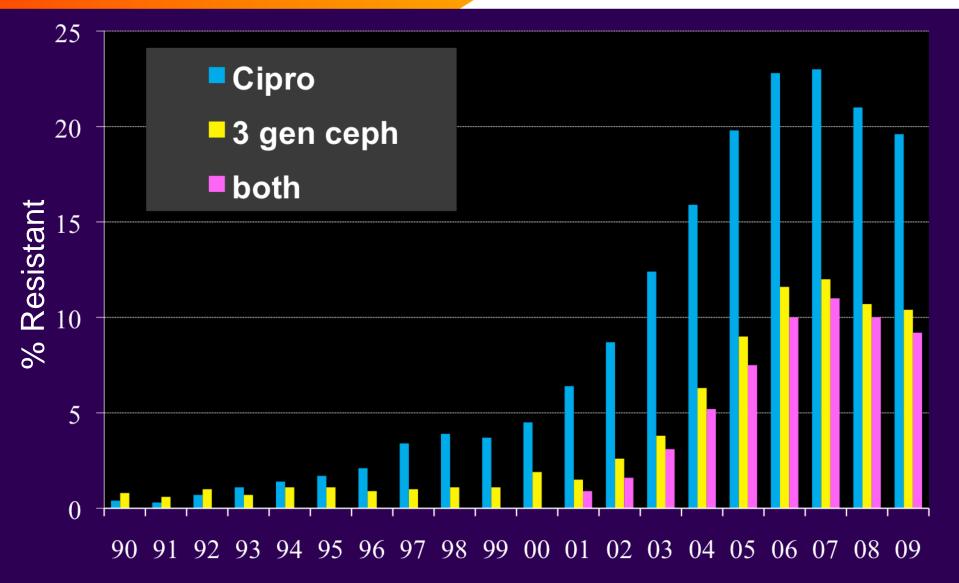
ESBLs in *E. coli* from humans and poultry in the UK

	Humans	Broilers	Turkeys
CTX-M types	15 >> 3 ,14	1 >> 3, 15	14 >> 1, 15, 55
Plasmid rep types	FII, F1B, I1	I1-y (CTX-M-1)	I1-y (CTX-M-1)
		A/C & P (CTX-M-3)	K (CTX-M 14)
			F (CTX-M1/14/15)
Major CTX-M-15 clone	ST131	ST156	ST156

- some genes / plasmid types are common to humans and poultry
- however, differences outweigh the similarities
- <u>current</u> risk to <u>UK public health</u> caused by poultry reservoir appears small; human reservoir has greater importance <u>in the UK</u>

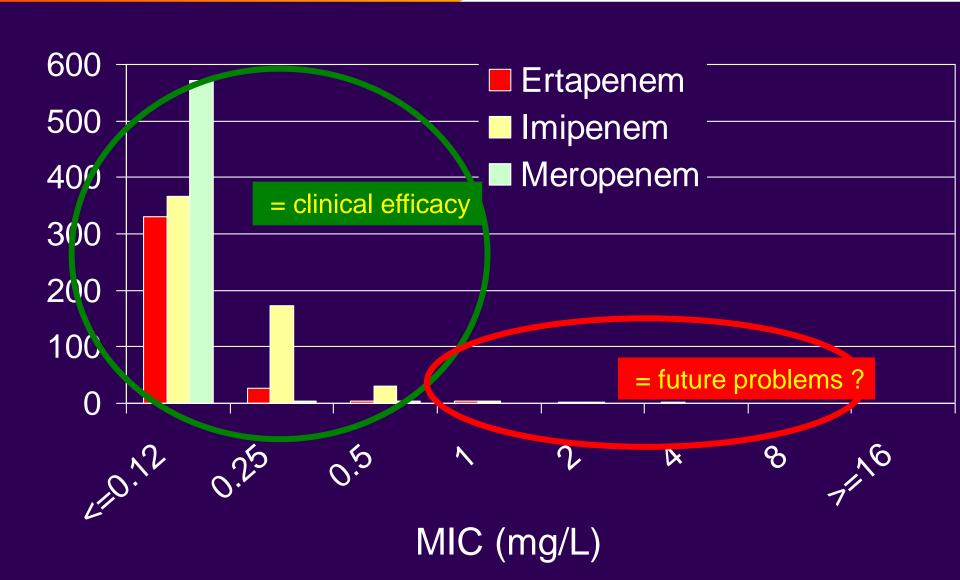
...,but that could change; experience in The Netherlands is different

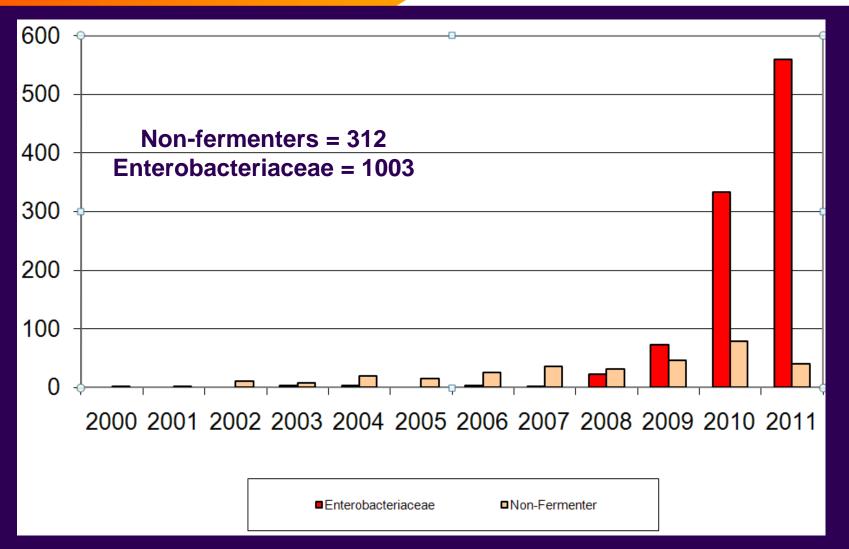
Level of genetic typing	% of human isolates with poultry associated genetic element ^a
ESBL genes (bla _{CTX-M-1} , bla _{TEM-52} , bla _{SHV-12} , bla _{SHV-2} and bla _{CTX-M-2})	35% (see Table I)
bla _{CTX-M-1} and bla _{TEM-52} genes bla _{CTX-M-1} and bla _{TEM-52} genes on InclI plasmid	30% (23.7% bla _{CTX-M-1} ; 6.2% bla _{TEM-52}) 20% (14.2% bla _{CTX-M-1} ; 6.2% bla _{TEM-52})
bla _{CTX-M-1} and bla _{TEM-52} genes on Incl plasmid belonging to complex CC7 or CC3 and CC5 resp.	19% (12.6% bla _{CTX-M-1} ; 6.2% bla _{TEM-52})
bla _{CTX-M-1} and bla _{TEM-52} genes on Incl plasmid belonging to complex CC7 or CC3 and CC5 resp. in a poultry-associated MLST strain (ST10, ST58 or ST117)	11% (9.5% bla _{CTX-M-1} ; 2.0% bla _{TEM-52})
(3110, 3130 01 31117)	


94% retail poultry samples were ESBL +ve

- c. 1 in 3 patients had a poultry-associated (PA) ESBL
- c. 1 in 5 patients had a PA ESBL encoded by a PA plasmid (pMLST)
- c. 1 in 10 patients had a PA ESBL encoded by a PA plasmid in a PA E.
 coli strain

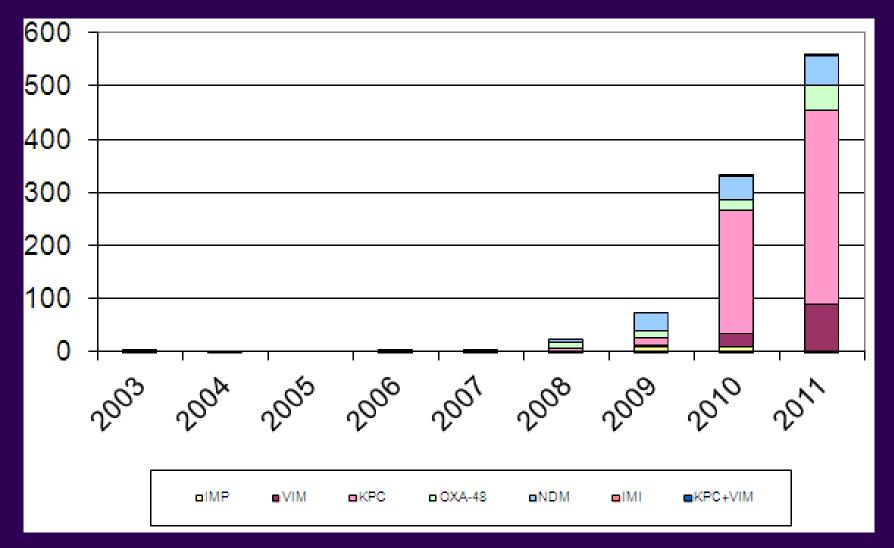
E. coli from blood & CSF in the UK


- a recent fall in resistance


Carbapenems vs. ESBL +ve E. coli

Carbapenemase-mediated resistance in the UK (n = 1315)*

Acquired carbapenemases

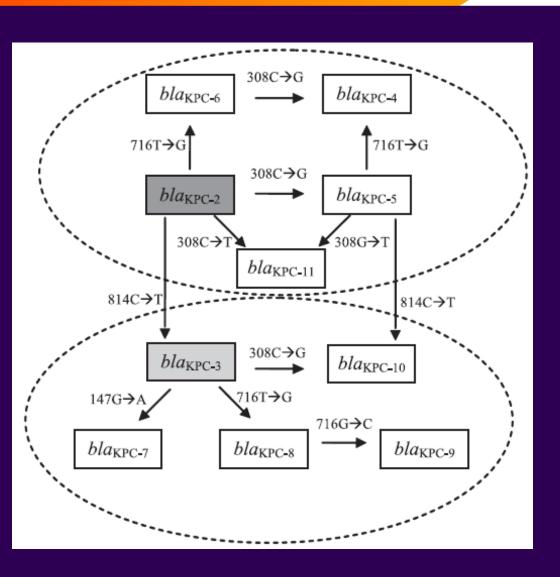


Class	Carbapenemase	Enterobacteriaceae	Non-fermenters
A (non-metallo)	KPC	+++	+
	IMI, NMC, SME	+	-
B (metallo)	IMP*, VIM*	+++	+++
	NDM	+++	++
	AIM, DIM, SIM, SPM, TMB	-	++
D (non-metallo)	OXA-48-like	+++	-
	OXA-23, -40, -58, -143	+/-	+++

- IMP- & VIM- types are integron-associated
- IMP-types described first, but have been overtaken by other types

Carbapenemase-producing Enterobacteriaceae in the UK (n = 1003)

The KPC family



$bla_{ m KPC}$ gene	KPC enzyme	Species	Yr isolated	Location	GenBank accession no.	Reference(s)
bla _{KPC-1} ^b bla _{KPC-2} bla _{KPC-3} bla _{KPC-4} bla _{KPC-5} bla _{KPC-6} bla _{KPC-7} bla _{KPC-8} bla _{KPC-9} bla _{KPC-10} bla _{KPC-11}	KPC-1 ^b KPC-2 KPC-3 KPC-4 KPC-5 KPC-6 KPC-7 KPC-8 KPC-9 KPC-10 KPC-11	Klebsiella pneumoniae K. pneumoniae K. pneumoniae Enterobacter cancerogenus Pseudomonas aeruginosa K. pneumoniae K. pneumoniae K. pneumoniae Escherichia coli Acinetobacter baumannii K. pneumoniae	1996 1998–1999 2000–2001 2003 2006 2003 2007–2008 2008 2009 2009 2010	North Carolina Maryland New York Scotland Puerto Rico Puerto Rico Ohio Puerto Rico Israel Puerto Rico	AF297554 AY034847 AF395881 AY700571 EU400222 EU555534 EU729727 FJ234412 FJ624872 GQ140348 HM066995	48 36 46 27 44 and 45 33 30 15 Unpublished 31 Unpublished

 ^a Species, year, and location of initial report for each variant.
 ^b bla_{KPC-1} and KPC-1 are no longer considered valid designations, as their sequences are identical to those of bla_{KPC-2} and KPC-2, respectively (47).

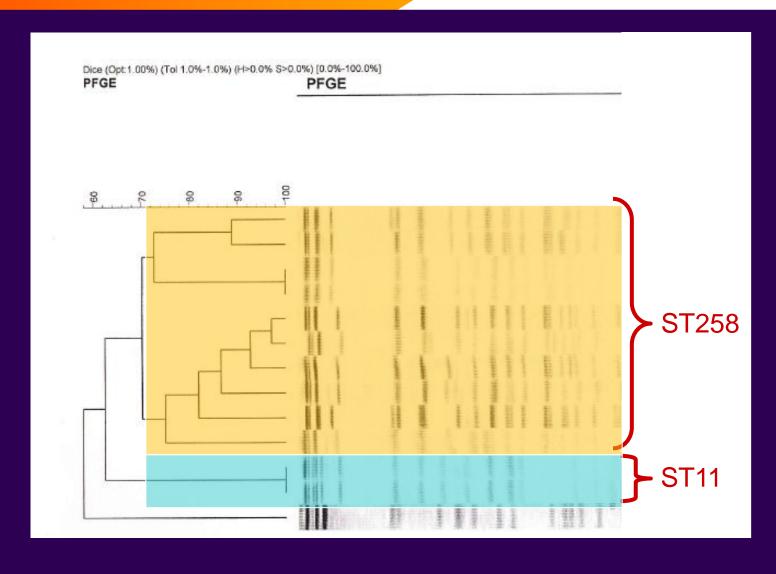
Evolution of the KPC family

KPC-2 / -3 most prevalent types

Differ by His(272)-Tyr change

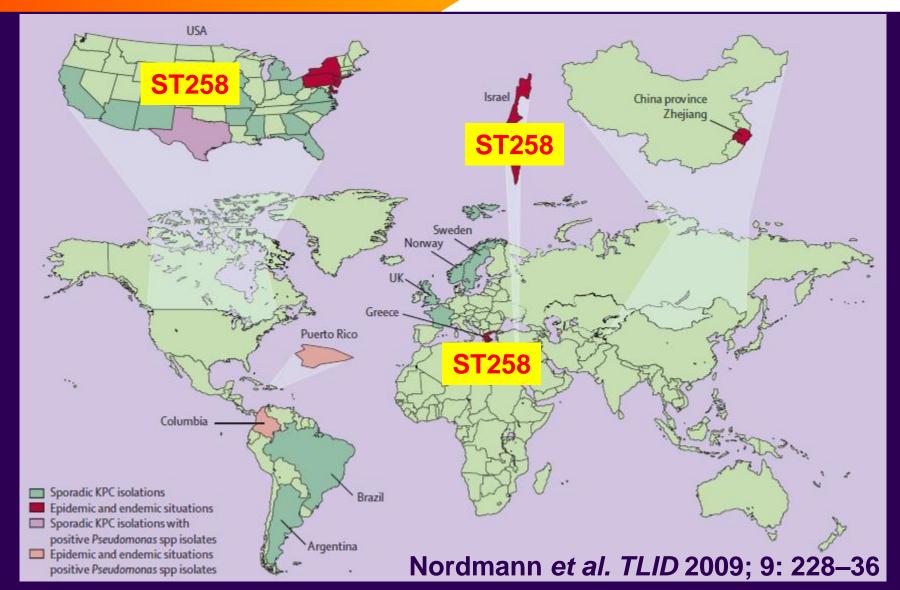
What selects this substitution?

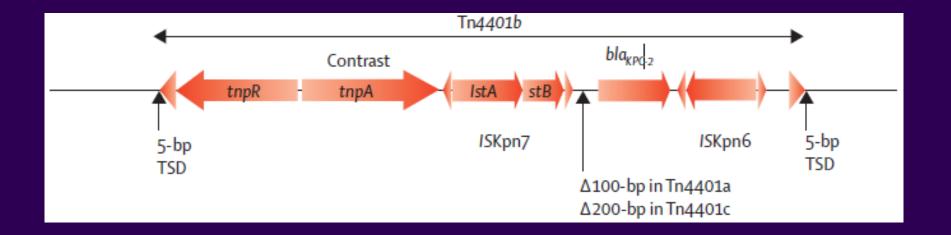
KPC +ve bacteria in the UK (Jan '12)


621 x Enterobacteriaceae

- 520 x Klebsiella spp.
- 50 x *E. coli*
- 40 x Enterobacter spp.
- 9 x Raoutella spp.
- 1 x Citrobacter spp.
- 1 x Serratia sp.

Scattered, but dominant in NW England


KPC-producing *K. pneumoniae* in the UK ...the first arrivals


Strain dynamics: a dominant international KPC +ve *K.* pneumoniae clone

bla_{KPC} often on Tn4401 elements

- Various isoforms of this transposon
- May have blaKPC -2 or -3

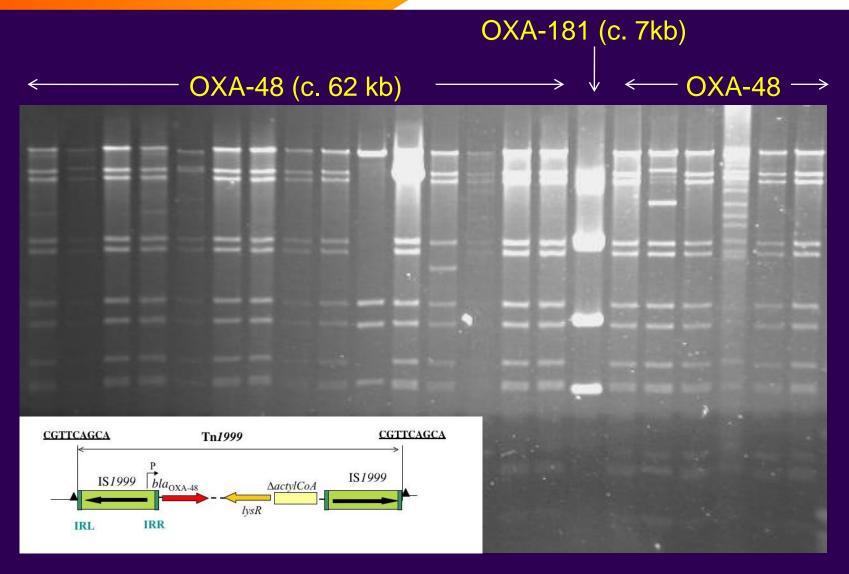
OXA-48-like carbapenemases: similar genes, but different plasmids

Endemic in Turkey.

Many European cases linked to North Africa, but few prevalence data for this region

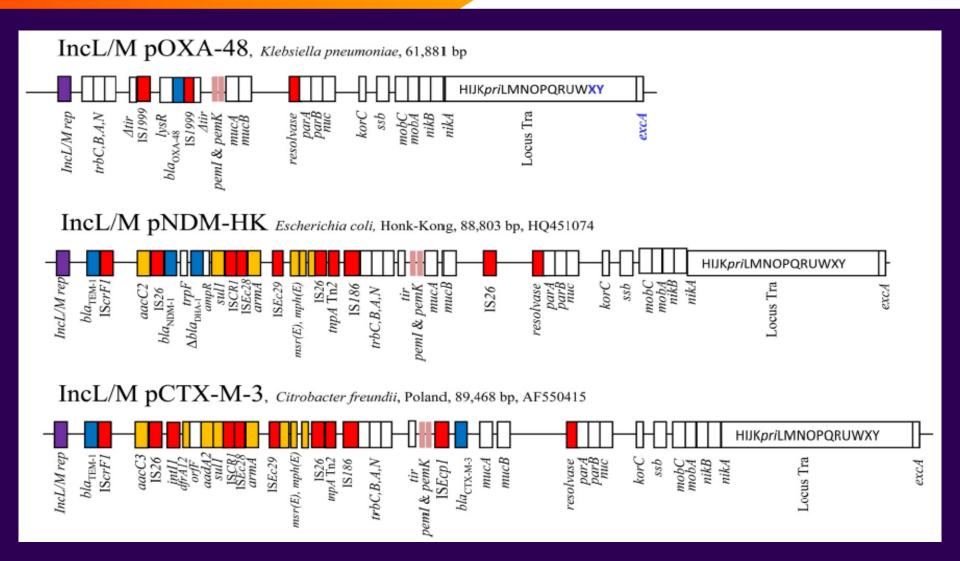
One of current concerns for Libyan trauma victims

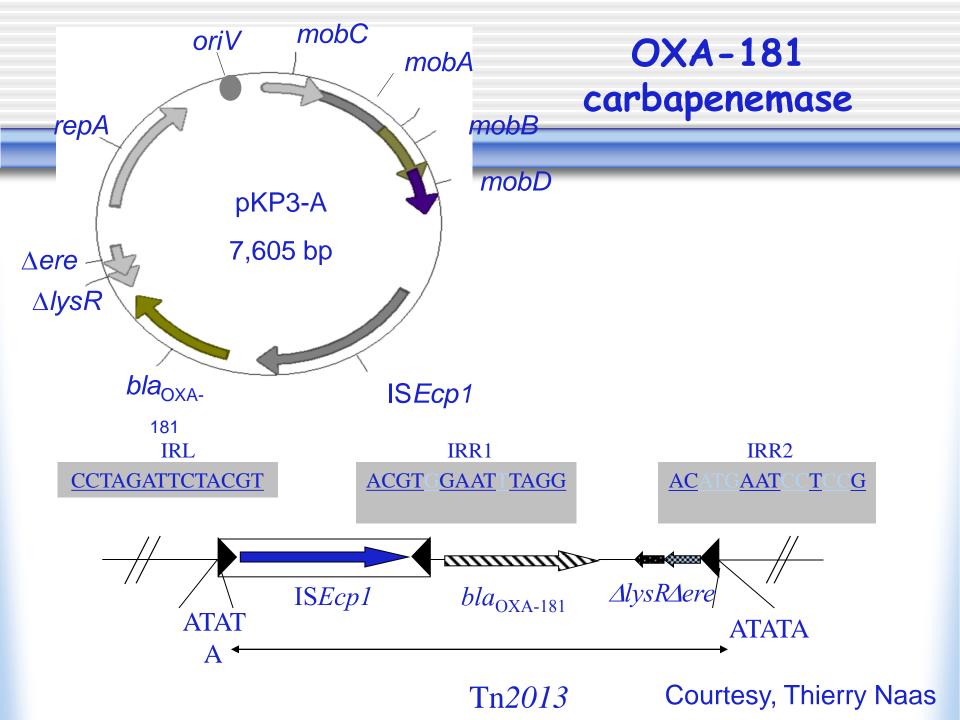
OXA-48-like enzymes in the UK (Jan '12)


92 x Enterobacteriaceae

- 72 x Klebsiella spp.
- 17 x *E. coli*
- 2 x Enterobacter spp.
- 1 x Citrobacter freundii

Spread of highly related plasmids


International plasmid 'epidemic': OXA-48 plasmids in *Klebsiella*, *Enterobacter* and *E. coli*



pOXA-48; ...new primers for PBRT

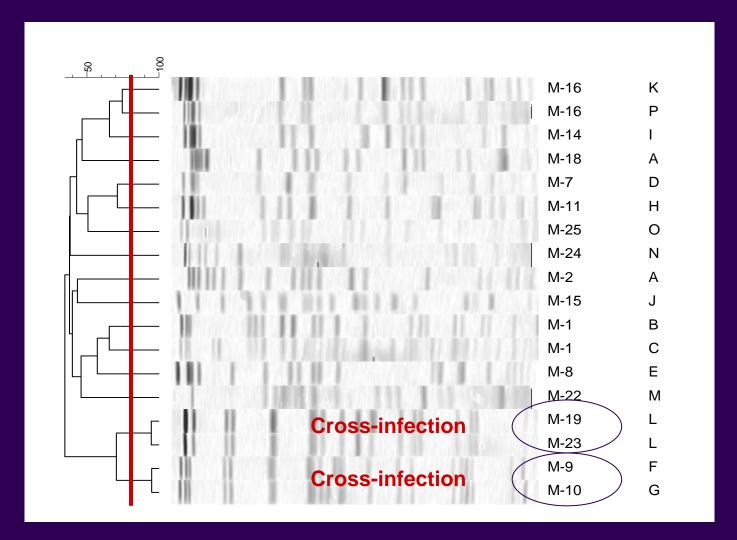
Diverse host strains: variable bla and resistance profiles

Isolate	Hospital + patient	Year	Isolation site	Travel History	ST	Carba- pene mase	Other β-lactamase genes detected by PCR			N	IIC (mg/l	L)ª
	_	0			•	•	•	IPM	MEM	ETP	CTX	CAZ
K. pneumoniae												
KP01	A1	2007	Urine	Turkey	147	OXA-48	CTX-M group 1; OXA-1; TEM; SHV ^b	16	8	>16	>256	256
KP02c	B2	2008	Wound	Unknown	353	OXA-48	TEM; SHV	4	2	>16	64	4
KP03	C3	2009	Urine	Unknown	432	OXA-48	OXA-1; SHV	4	2	8	1	0,25
KP04	D4	2009	Urine	Unknown	101	OXA-48	CTX-M group 1; OXA-1; TEM; SHV	2	0,5	4	256	256
KP05	E5	2009	Fluid	Unknown	383	OXA-48	CTX-M group 1; OXA-1; SHV	2	1	16	>256	256
KP07	F6	2010	Urine	Unknown	14	OXA-48	CTX-M group 1; SHV	4	1	8	>256	>64
KP08	G7	2010	Blood	Unknown	858	OXA-48	CTX-M group 1; OXA-1; TEM; SHV	2	0,5	4	256	64
KP09	H8	2010	Urine	None	17	OXA-48	OXA-1; TEM; SHV	2	2	8	1	0,5
KP16	19 ^d	2010	Urine	Turkey	152	OXA-48	SHV	2	2	16	8	1
KP17	J10	2011	Fluid	Unknown	101	OXA-48	CTX-M group 1; OXA-1; TEM; SHV	2	2	8	>256	256
KP20	K11	2011	Blood	Unknown	101	OXA-48	CTX-M group 1; OXA-1; OXA-9; TEM; SHV	8	16	>16	>256	128
KP22	E12	2011	Wound	Pakistan	37	OXA-48	CTX-M group 1; OXA-1; SHV	2	8	8	256	>256
KP24	L13	2011	Urine	Unknown	376	OXA-48	CTX-M group 9; OXA-9; TEM; SHV	8	8	>16	>256	64
KP19	B14	2011	Blood	India	11	OXA-181	CTX-M group 1; OXA-1; SHV	128	32	>16	>256	64
E. coli												
EC06	H15	2010	Wound	Unknown	648	OXA-48	CTX-M group 1; OXA-1	1	0.5	4	>256	32
EC10	M16	2010	Blood	None	131	OXA-48	None	2	1	_ 8	4	0.25
EC11	B17	2010	Wound	Unknown	38	OXA-48	CTX-M group 9; TEM	4	8	>16	256	8
EC12	N18	2010	Urine	Unknown	10	OXA-48	TEM	4	0.5	2	2	0.25
EC13	J19	2010	Blood	Unknown	38	OXA-48	CTX-M group 9; TEM	64	>32	>16	256	4
EC15	O20	2010	Urine	Unknown	155	OXA-48	TEM	4	0.5	4	0.5	0.25
EC18	P21	2011	Urine	Unknown	38	OXA-48	CTX-M group 9; TEM	2	0.5	4	256	1
EC21	Q22	2011	Urine	Unknown	88	OXA-48	TEM	8	4	16	8	0,5

NDM carbapenemases: global reports, but a clear epicentre

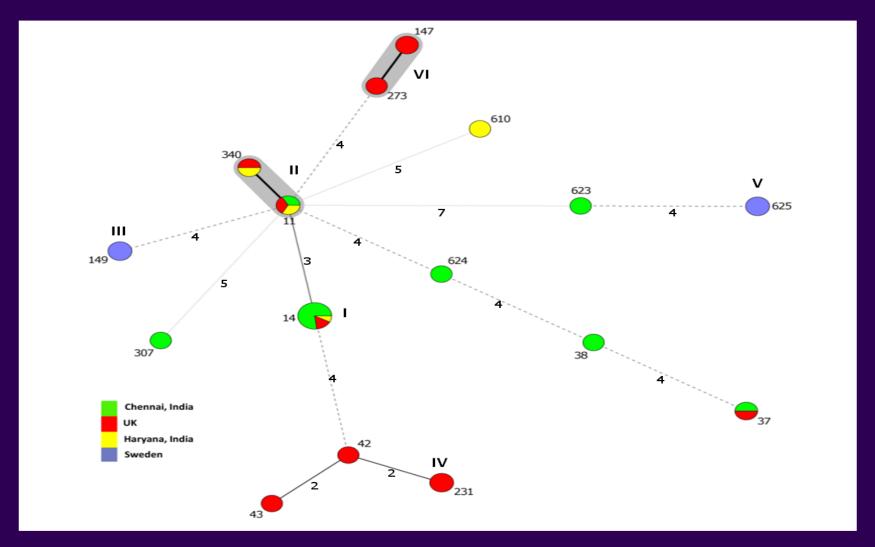
NDM +ve bacteria in the UK (115 patients, Jan '12)

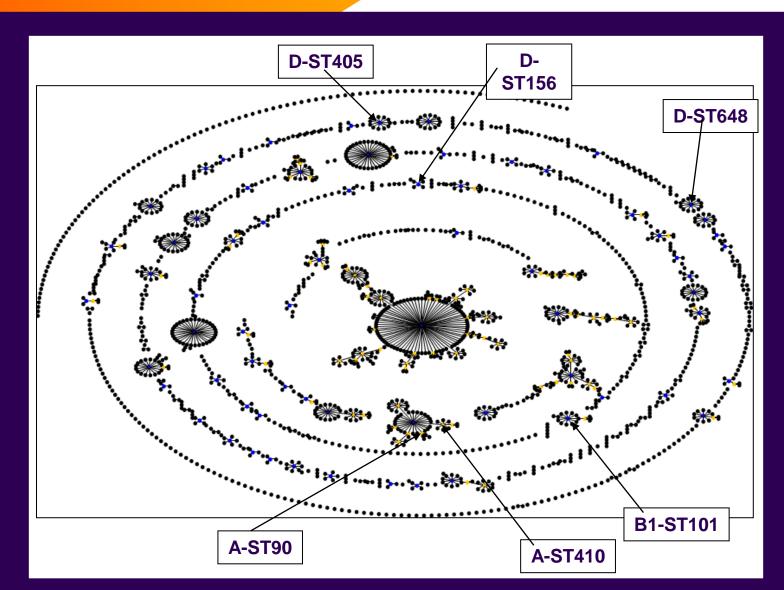
138 x Enterobacteriaceae

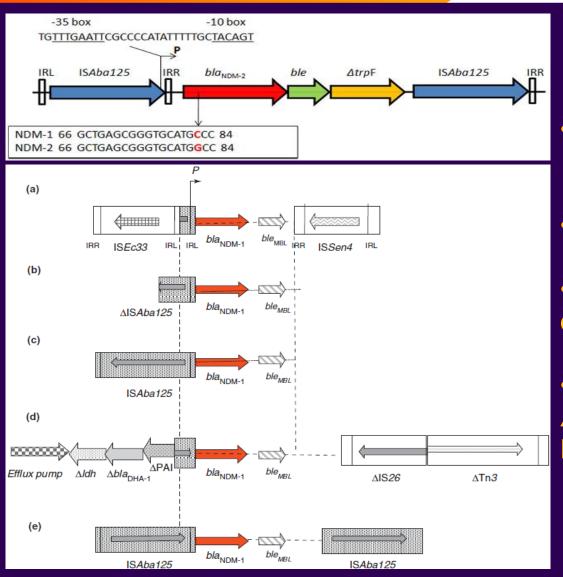

- 87 x *Klebsiella* spp.
- 33 x E. coli
- 12 x Enterobacter spp.
- 3 x Citrobacter spp.
- 1 x Morganella morgannii
- 1 x Providencia sp.
- 1 x Serratia sp.

• 11 x A. baumannii

NDM-1 is coded by a mobile gene, on mobile plasmids, and will spread further


NDM +ve *K. pneumoniae* in the UK are diverse


...as they are internationally


...and so are the *E. coli*

...and in diverse (but often related) genetic contexts

- intact or partial ISAba125
 - provides promoter
- bleomycin resistance gene
- limited sources for the original escape event
- escape from 'species X' to Acinetobacter and then to Enterobacteriaceae

Espinal et al AAC 2011: 55: 5396-8 Nordmann et al. Trends Microbiol 2012

Antil	biotic	M	etallo-enzyme F (IMP, NDM or		Non-	Non-metallo-enzyme Producers (KPC or OXA-48-like)			
		E. coli	Klebsiella	Enterobac Citrobac	- AAD	Klebsiella	Enterobacte Citrobacte		
Imipenen	n	9%	1%	3%	10%	5%	18%		
IPM+EDT	A [b]	100%	99%	100%	27%	8%	27%		
Meropen	em	9%	5%	3%	47 %	8%	27%		
Ertapene	m	0%	0%	0%	0%	0%	0%		
Ampicilli	n	0%	0%	0%	0%	0%	0%		
Co-amoxi	iclav	0%	0%	0%	0%	0%	0%		
Piperacill	lin	0%	0%	3%	0%	0%	0%		
PIP + taz	obactam	4%	0%	7%	0%	0%	0%		
Cefotaxin	ne	0%	0%	0%	3%	2%	0%		
Ceftazidi	me	0%	0%	0%	17%	6%	0%		
Aztreona	m	4%	18%	13%	13%	6%	0%		
Ciproflox	acin	9%	10%	17%	53%	49%	50%		
Gentamio	ein	0%	12%	27%	70%	65%	41%		
Tobramy	cin	0%	1%	0%	50%	58%	50%		
Amikacin		17 %	32%	50%	90%	85%	91%		
Colistin		100%	97%	93%	100%	92%	100%		
Tigecycline 100% 47% 47			47%	100%	74%	68%			
-	-	-	AC v. 10.1 break		omes: not for theren	eutic use			
z. Diagnos		:90% produc			ymes; not for therapeutic use. Active vs. >75-89% producers				
	Active vs. 50-74% producers				Active vs. <50% producers				

HPR, 2011; 5: issue 24 (17/06/11; Woodford & Livermore)

..., and resistance may emerge to the few active agents

Table 1. MICs in mg/L for NDM-1-producing *E. coli* isolated from the patient; the second was isolated from blood 4 months after the original was isolated from a calciphylactic skin lesion

Antimicrobial agent	Isolate 1 (calciphylactic lesion)	Isolate 2 (blood culture)
Amikacin	>64	>64
Gentamicin	>32	>32
Amoxicillin/clavulanate	64	64
Ampicillin	>64	>64
Aztreonam	>64	>64
Cefotaxime	>256	>256
Cefpirome	>64	>64
Ceftazidime	>256	>256
Ertapenem	>16	>16
Imipenem	64	64
Meropenem	>32	>32
Piperacillin/tazobactam	>64	>64
Colistin	<0.5	< 0.5
Ciprofloxacin	>8	>8
Tigecycline	< 0.25	8

Limiting the impact of carbapenemases

- Detect resistance rapidly in the clinical laboratory
 - Hodge tests / synergy tests / automated systems / agreed algorithms
 - Reference laboratory support
 - Molecular tests
- Identify infected / colonized patients. Essential for :
 - appropriate patient management
 - rapid implementation of infection control procedures
- Prevent onwards transmission

Advice on Carbapenemase Producers: Recognition, infection control and treatment

Reasons for the success of ESBLs and carbapenemases

- Multifactorial; highly complex; diverse
- Generalizations are overly simplistic
- Country-to-country variation in relative importance

	ESBLs	Carbapenemases
Successful host strains / clones	+++	+++
Successful plasmids	+++	+++
Community reservoirs (human)	+++	+
International human travel	+++	+++
Animal reservoirs	+++	+/- (?)
Food chain	+	- (?)

Unanswered questions

- What are the population structures of host species
 - Which STs dominate? Need for structured surveillance
- Do distributions of carbapenemases reflect this?
 - getting into successful clones?
 - or making 'lesser' clones successful?
- Why is ST258 strongly associated only with KPC?
- Relevance of His(272) → Tyr change in KPC-2 / -3 ?
- Reasons for stability of pOXA-48a plasmids?

For the future

- Better understanding of resistant bacterial clones
 - distribution (global, national, regional)
 - contribution resistance plays to success
- Better and faster diagnostics
 - early, effective interventions
- New treatment options
 - our 'last resorts' are severely threatened