

Detection of resistance genes and typing of bacteria based on whole genome sequencing (WGS)

Henrik Hasman
DTU -Food

Research group for bacterial genomics and antimicrobial resistance

Reference laboratory for DK, EU and WHO

- Surveillance (Global detection and control)
- Various ad hoc research projects

The Challenge

Is to:

- Continue to increase the power of surveillance and diagnostic using molecular tools
- Develop sequenced-based diagnostics that can be used as close to the patient as possible

Google maps

Center for Genomic Epidemiology (CGE)

Purpose of CGE

 Provide a proof of concept of combining bioinformatics with both local diagnostics and global epidemiology in real-time

*SNP – Single Nucleotide Polymorphism (extreme MLST)

NEWS&ANALYSIS

EPIDEMIOLOGY

Examples – MLST and Resfinder

MLST Results

Sequence Type: ST-678

SETTINGS:

Organism: Escherichia coli

MLST Profile: ecoli

Genes in MLST Profile: 7

Locus	%Identity	Allele Length/HSP Length	Gaps	Allele
adk	100%	536/536	0	adk-6
fumc	100%	469/469	0	fumc-6
gyrb	100%	460/460	0	gyrb-5
icd	100%	518/518	0	icd-136
mdh	100%	452/452	0	mdh-9
pura	100%	478/478	0	pura-7
reca	100%	510/510	0	reca-7

Examples – MLST and Resfinder

Results

ResFinder Results

esistence gene									
		Aminoglycoside							
strA	%Identity	Gene Length/HSP Length	Phenotype		Accession number				
	100.00%	804/804	Amin Alter		<u>AF321551</u>				
strB	100.00%	837/837	Aminoglycoside resistance Alternate name; aph(6)-Id		FJ474091				
Str E	Beta-lactam Seta-lactam								
	%Identity	Gene Length/HSP Length	Phenotype		Accession number				
C -M-15	100.00%	876/876	Beta-lactamase resistance Alternate name; UOE-1		DQ302097				
		Fluoroquinolone							
	%Identity	Gene Length/HSP Length		Phenotype	Accession number				
		No resistence genes found	i.						
		MLS - Macrolide-Lincosamide-Str	eptograminB						
Resistence gene	%Identity	Gene Length/HSP Length		Phenotype	Accession number				
		No resistence genes found	i.						
		Phenicol							
Resistence gene	%Identity	Gene Length/HSP Length	Phenotype		Accession number				
		No resistence genes found	i.						
		Sulphonamide							
Resistence gene	%Identity	Gene Length/HSP Length		Phenotype	Accession number				
sulI	100.00%	840/761	Sulphonemide resistance		<u>AY224185</u>				
		Tetracycline							
Resistence gene	%Identity	ity Gene Length/HSP Length		Phenotype	Accession number				
tet(A)	100.00%	1200/1200	Tetracycline resistance		<u>AJ517790</u>				
		Trimethoprim							
Resistence gene	%Identity	Gene Length/HSP Length	Phenotype		Accession number				
dfrA7	100.00%	474/474	Trimethoprim resistance		<u>JF806498</u>				
		Glycopeptide							
Resistence gene	%Identity	Gene Length/HSP Length	Phenotype		Accession number				
		No resistence genes found	L						

Antimicrobial susceptibility Phenotypes vs genotypes Phenotyping

Pro's:

Relatively fast

Easy

Cheep

Can detect new phenotypes

Con's:

Not always fast enough (hence empiric treatment)

Require that the bacterium can grow in the lab

Influenced by "the human factor" and by biological variation

No breakpoint consensus (CLSI vs EUCAST)

Antimicrobial susceptibility Phenotypes vs genotypes Genotyping

Pro's:

Can be used for many other purposes (e.g. outbreak investigation)

Can cover all relevant (known) resistance genes

Can detect genes with heterogeneous expression (e.g. *mecA*)

Can be combined with phenotypes to detect new genes

Can properly be used directly on clinical samples (sputum, blood, urine ect.)

Con's:

Still relatively expensive (~1000 Dkr/strain)

Require high level of skills and new equipment

Does not detect new genes automatically

Require the ability to generate "plain language reports"

Thank you for your attention!

