

## Molecular taxonomy: the bacterial species concept and polyphasic taxonomy revisited

Peter Vandamme



ぷ



Symposium: **"Fra grundforskning til klinisk anvendelse"** September 12, Lyngby , Denmark



## Definition of a bacterial species

- "The unit of classification is a coherent group of like individuals, called a species. The term is difficult to define with precision because a species is not a definite entity, but a taxonomic concept" (Breed et al., 1957)
  - "A collection of strains that share many features in common and differ considerably from other strains" (Staley and Krieg, 1984)



ぷ



## Ad Hoc Committees on Reconciliation of Approaches to Bacterial Systematics (Wayne et al. 1987)

- The <u>complete genome</u> should be the reference standard to determine phylogeny and taxonomy
- The phylogenetic definition of a species generally would include strains with at least 60 - 70% DNA-DNA hybridisation
- Phenotypic characteristics should agree with this definition



いた





## Polyphasic species definition

- The bacterial species appears to be an assemblage of isolates originating from a common ancestor population in which a steady generation of genetic diversity resulted in clones with different degrees of recombination and characterized by:
  - a certain degree of phenotypic consistency
  - a significant degree of DNA-DNA hybridization



<u>ې</u>د

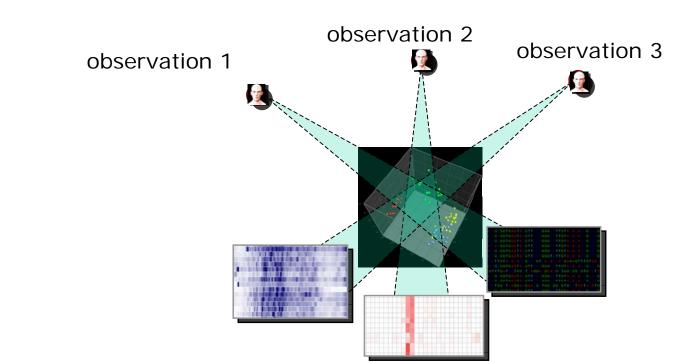
over 97% of 16S rRNA gene sequence similarity



## American Academy of Microbiology, March 2007

- "Reconciling Microbial Systematics and Genomics"
- http://www.asm.org/Academy/index.asp?bid=49252




いた



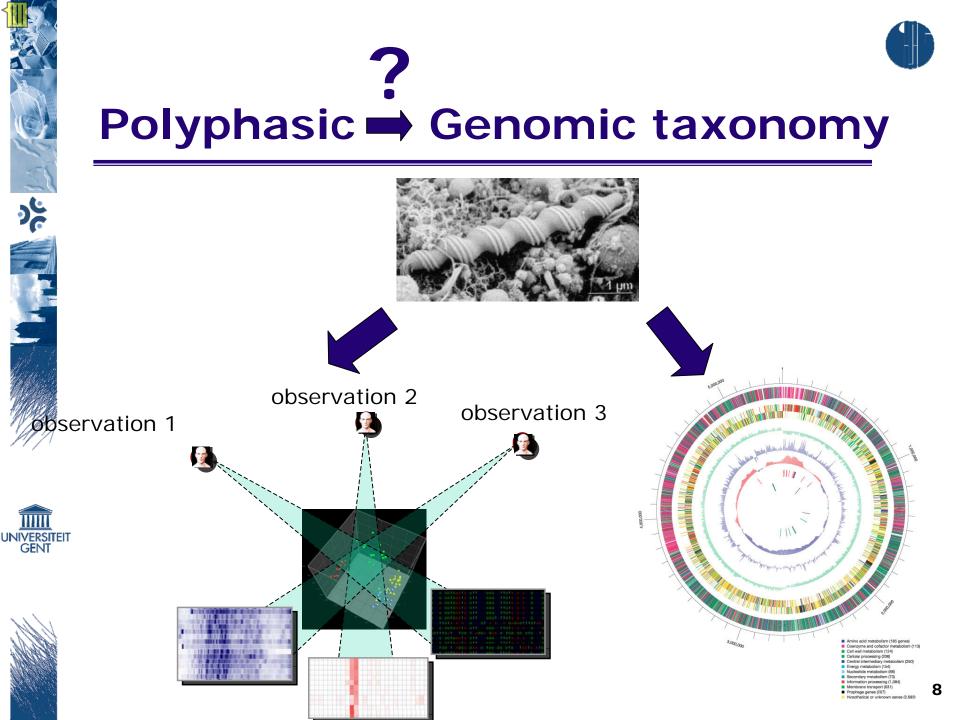


## Polyphasic taxonomy- Reconciling Microbial Systematics and Genomics

- "Species are defined by pragmatic, arbitrary, and sometimes artificial methods based on 16S rRNA gene sequences, DNA-DNA hybridisation, morphology, physiology and chemotaxonomy (...)"
- The system is functional in many ways






## The polyphasic approach (AAM report)

- " The system is somewhat functional but inadequate:
  - Conflicts between phenotypic and phylogenetic classifications
  - Limited means for classifying uncultured microbes
  - Current species often lack cohesiveness (...) "
- Lack of throughput capacity



<u>ې</u>د

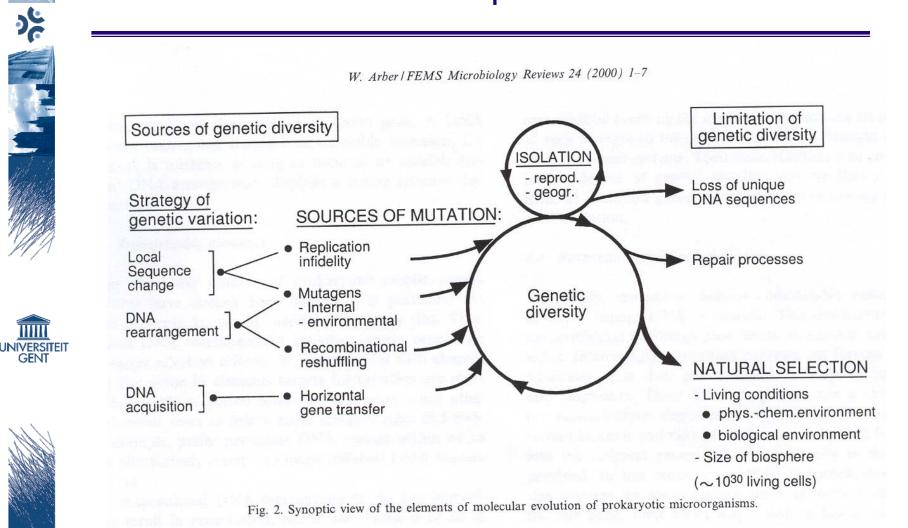






## Now that we have access to whole-genome sequences: what do they tell us?

| OPINION                                          |                                                                                                                                                                                                       |                                                                                                                                                      |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Re-evaluating                                    | prokaryotic species                                                                                                                                                                                   | Modelling bacterial speciation                                                                                                                       |
| Tom Coenye, Edward J. Fei                        | Cohan, Jeffrey G. Lawrence, Brian G. Spratt<br>I, Erko Stackebrandt, Yves Van de Peer,<br>L. Thompson and Jean Swings                                                                                 | - William P. Hanage, Brian G. Spratt, Katherine M. E. Turner<br>and Christophe Fraser*                                                               |
|                                                  | FEMS                                                                                                                                                                                                  | Phil OSOPHICAL<br>TRANSACTIONS Phil Trans. R. Soc. B (2006) 361, 1917–<br>THE ROYAL B doi:10.1098/rstb.2006.<br>SOCIETY Published online 6 October 2 |
| ELSEVIER HIMS M                                  | krobidegy Review 29 (2005) 147-167 Reviews                                                                                                                                                            | Sequences, sequence clusters<br>and bacterial species                                                                                                |
| Towards a pr                                     | okaryotic genomic taxonomy 🌣                                                                                                                                                                          | William P. Hanage, Christophe Fraser and Brian G. Spratt*                                                                                            |
| TRANSACTIONS<br>THE ROYAL B                      | Phil. Trave. R. Soc. B (2006) 361, 1911–1916<br>doi:10.1098/rmh2006.1915<br>Publikud addis:110.2016/2020                                                                                              | Copyright © 2002 by Annual Reviews. All rights reser<br>First published online as a Review in Advance on May 10, 2<br>WHAT ARE BACTERIAL SPECIES?    |
| proka<br>Dirk Gevers <sup>1,2,*</sup> , Peter Da | stones towards a new<br>aryotic taxonomy<br>wyndt <sup>1</sup> , Peter Vandamme <sup>1</sup> , Anne Willems <sup>1</sup> ,<br>rt <sup>1</sup> , Jean Swings <sup>1</sup> and Paul De Vos <sup>1</sup> | Frederick M. Cohan                                                                                                                                   |
| 00100000000000000000000000000000000000           | Vol. 187, No                                                                                                                                                                                          | I8 FEMS Microbiology Reviews 25 (2001) 19-67                                                                                                         |
|                                                  | ed Taxonomy for Prokaryotes                                                                                                                                                                           | Review                                                                                                                                               |
| Towards a Genome-Base                            | nidis <sup>1,2</sup> and James M. Tiedje <sup>1,2,3*</sup>                                                                                                                                            | The species concept for prokaryotes                                                                                                                  |


برد ال

UNIVERSITEIT GENT

W Ford Doolittle and R Thane Papke

Konstantinos T. Konstantinidis\*, Alban Ramette<sup>†</sup> and James M. Tiedje

# We're beginning to understand genome content, evolution and diversity of bacterial species



## •

## Now that we have access to whole-genome sequences: what can they tell us?

- Genomes seems to be composed of a core set of genes that is conserved among strains of the same species and accessory genes that are strain specific
- Phylogenetic signal present in core genes (ANI values\*) does not necessarily correlate with gene content
  - ANI values reflect phylogeny
  - Gene content reflects ecology
- The basic taxonomy parameters are being confirmed: there is a core set of genes which, together, reflect 16S rRNA gene sequence similarity and whole genome DNA-DNA hybrid stability ('relatedness')

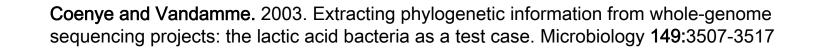


<sup>\*</sup> Konstantinidis and Tiedje. 2005. Genomic insights that advance the species definition for prokaryotes<sub>11</sub> PNAS 102:2567-2572



<u>ې</u>د



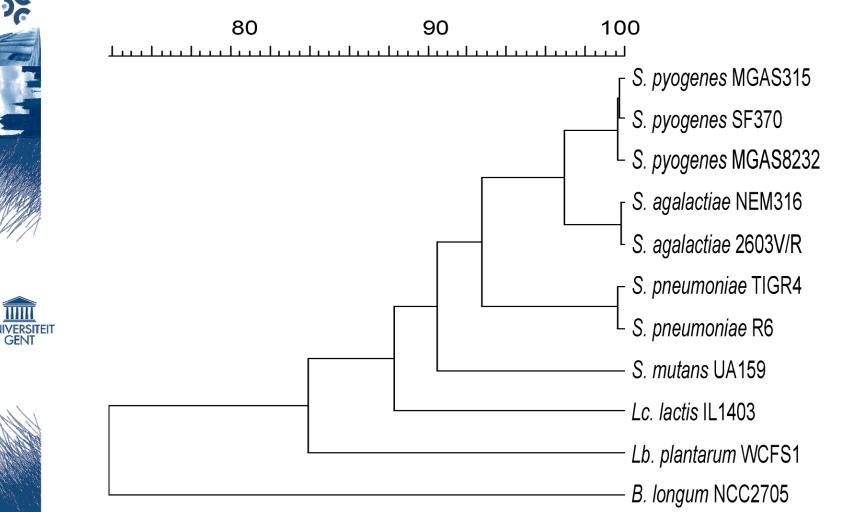

## Real life... the lactic acid bacteria as test case

#### Table 1. Whole-genome sequences used in this study

| Organism              | Accession | Genome<br>size (bp) | G + C<br>(mol%) |      |           | Reference            |                           |
|-----------------------|-----------|---------------------|-----------------|------|-----------|----------------------|---------------------------|
|                       | no.       |                     |                 | No.  | Bases     | Percentage of genome |                           |
| S. agalactiae NEM316  | NC_004368 | 2 211 485           | 35.62           | 2134 | 1 961 106 | 88.6                 | Glaser et al. (2002)      |
| S. agalactiae 2603V/R | AE009948  | 2160267             | 35.64           | 2172 | 1908094   | 88.3                 | Tettelin et al. (2002)    |
| S. mutans UA159       | AE014133  | 2 030 921           | 36.82           | 1960 | 1744986   | 85.9                 | Ajdic et al. (2002)       |
| S. pneumoniae R6      | AE007317  | 2038615             | 39.71           | 2043 | 1 773 705 | 87.0                 | Hoskins et al. (2001)     |
| S. pneumoniae TIGR4   | AE005672  | 2 160 837           | 39.69           | 2234 | 1884995   | 87.2                 | Tettelin et al. (2001)    |
| S. pyogenes MGAS8232  | AE009949  | 1895017             | 38.54           | 1845 | 1615122   | 85.2                 | Smoot et al. (2002)       |
| S. pyogenes MGAS315   | NC_004070 | 1 900 521           | 38.59           | 1865 | 1629942   | 85.7                 | Beres et al. (2002)       |
| S. pyogenes SF370     | AE004092  | 1 852 441           | 38.51           | 1727 | 1572125   | 84.9                 | Ferretti et al. (2001)    |
| Lc. lactis IL1403     | AE005176  | 2 365 589           | 35.32           | 2266 | 2002833   | 84.6                 | Bolotin et al. (2001)     |
| Lb. plantarum WCFS1   | AL935263  | 3 308 274           | $44 \cdot 46$   | 3051 | 2796276   | 84.5                 | Kleerebezem et al. (2003) |
| B. longum NCC2705     | AE014295  | 2 256 646           | 60.11           | 1729 | 1927401   | 85.4                 | Schell et al. (2002)      |



ぷ






## **Comparing sequences**

#### 16S rRNA gene sequence similarity

ぷ





## **Wole-genome analyses**

- Comparison of the sequence of 16S rRNA genes (nucleotides) and nine house-keeping proteins (gyrB, rpoD, sodA, dnaK, recA, gki, ddl, alaS and ileS) (amino acids) + construction of a supertree
- Detection of orthologous genes by bidirectional genome-togenome BLASTP analysis
- Determination of dinucleotide relative abundance values
- Determination of codon usage statistics



• Determination of conservation of gene order





### **Differences in gene content**

| Species and strain designation | 1.    | 2.    | 3.    | 4.    | 5.    | 6.    | 7.    | 8.    | 9.    | 10.   | 11. |
|--------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| 1. S. agalactiae NEM316        |       |       |       |       |       |       |       |       |       |       |     |
| 2. S. agalactiae 2603V/R       | 84.39 | -     |       |       |       |       |       |       |       |       |     |
| 3. S. mutans UA159             | 68.73 | 68.83 | -     |       |       |       |       |       |       |       |     |
| 4. S. pneumoniae R6            | 66.72 | 67.76 | 67.32 | -     | -     |       |       |       |       |       |     |
| 5. S. pneumoniae TIGR4         | 61.19 | 61.94 | 59.78 | 93.05 | -     |       |       |       |       |       |     |
| 6. S. pyogenes MGAS8232        | 70.79 | 74.04 | 64.77 | 64.93 | 65.20 | -     |       |       |       |       |     |
| 7. S. pyogenes MGAS315         | 69.60 | 72.92 | 64.34 | 63.24 | 63.97 | 92.28 | -     | ]     |       |       |     |
| 8. S. pyogenes SF370           | 74.23 | 75.90 | 69.20 | 67.85 | 68.08 | 92.01 | 91.31 | -     |       |       |     |
| 9. Lc. lactis IL1403           | 59.44 | 60.24 | 58.47 | 55.96 | 56.49 | 55.69 | 56.13 | 54.63 | -     |       |     |
| 10. Lb. plantarum WCFS1        | 53.03 | 53.10 | 51.98 | 48.90 | 49.79 | 47.10 | 46.90 | 46.28 | 56.54 | -     |     |
| 11. B. longum NCC2705          | 43.96 | 43.96 | 43.78 | 42.97 | 43.20 | 38.98 | 39.33 | 39.56 | 39.98 | 48.41 | -   |



いで

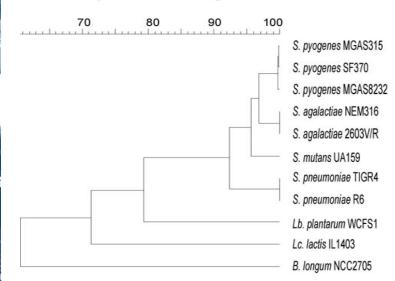




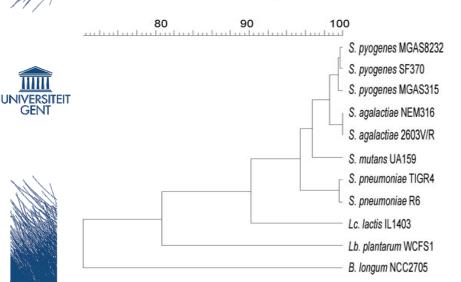
## **Differences in gene content**

#### 16S rDNA similarity

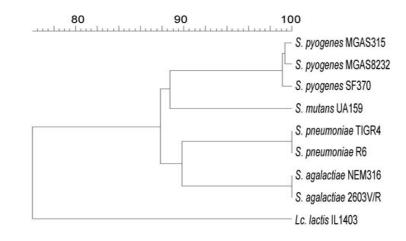
ぷ 80 90 100 7,0 50 60 80 90 100 S. pyogenes MGAS315 S. agalactiae NEM316 S. agalactiae 2603V/R S. pyogenes SF370 S. pyogenes MGAS315 S. pyogenes MGAS8232 S. pyogenes MGAS8232 S. agalactiae NEM316 S. pyogenes SF370 S. agalactiae 2603V/R S. mutans UA159 r S. pneumoniae TIGR4 S. pneumoniae TIGR4 S. pneumoniae R6 S. pneumoniae R6 S. mutans UA159 UNIVERSITEIT GENT L. lactis IL1403 Lc. lactis IL1403 L. plantarum WCFS1 Lb. plantarum WCFS1 B. longum NCC 2705 B. longum NCC2705


fraction of shared orthologous genes

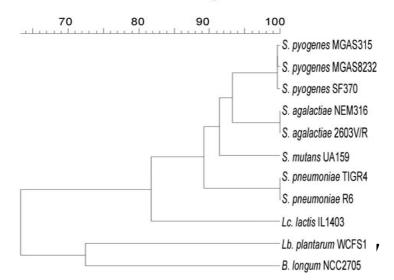
## **Comparing sequences**







الم مرد الم



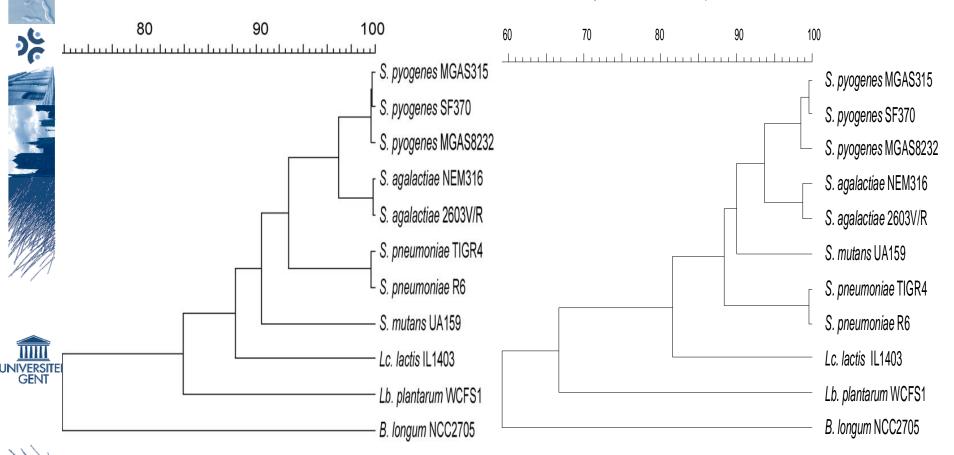

#### dnaK similarity



#### sodA similarity



recA similarity






## The supertree

16S rDNA similarity

similarity of combined sequences



- Konstantinidis et al., 2006a. Towards a more robust assessment of intraspecies diversity using fewer genetic markers. AEM 72:7286-93
- Konstantinidis et al., 2006b. The bacterial species definition in the genomic era. Phil. Trans. Royal Soc. B 361:1929-40.

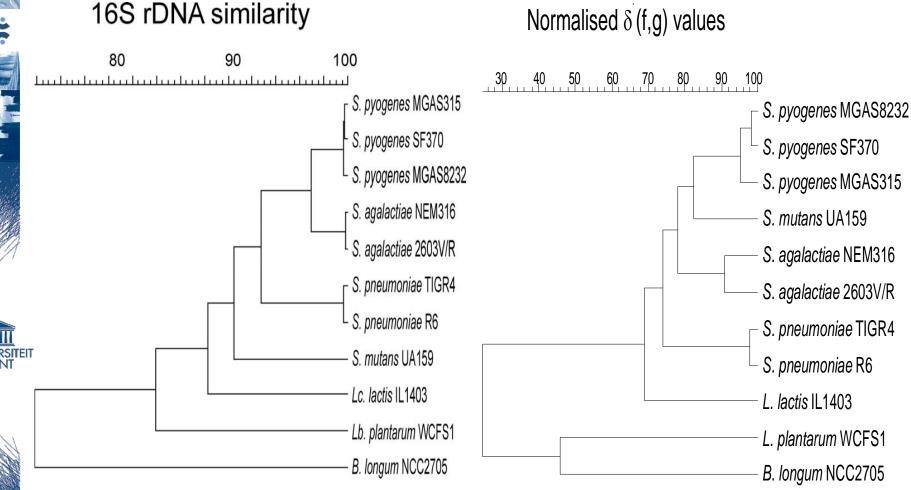




## **Compositional bias (Karlin signatures)**

- Relative abundance values of di/tri/tetranucleotides constitute a genomic signature; hence dissimilarity in relative abundance
- Most used : set of dinucleotide values (easiest to compute!)
- Mathemical :

 $\rho^{*}_{XY} = f_{XY}/f_{X}f_{Y}$  (normal range 0.78 – 1.23) (X, Y = A, C, G, T; XY = AA, AC, AG, AT, ..., TT)


 $\delta^*(f,g) = 1/16 \Sigma | \rho^*_{XY}(f) - \rho^*_{XY}(g) |$  (within species < 20) (measure of dissimilarity between genomes)



Karlin et al., 1997. Compositional biases of bacterial genomes and evolutionary implications. JB 179:3899-913



## **Dinucleotide relative abundance**



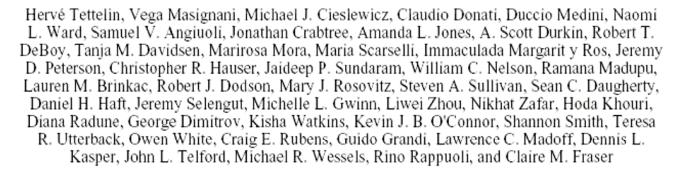


## Now that we have access to wholegenome sequences: what do they tell us?

- Some basic taxonomic parameters are being confirmed: high DNA-DNA hybridisation levels and highly similar 16S rRNA gene sequences are reflected in the whole genome content
- Core & accessory genomes, open & closed pan-genomes



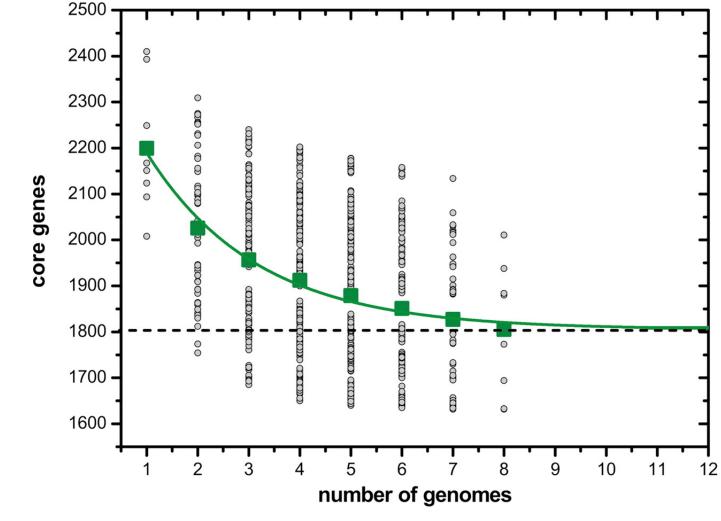
<u>ې</u>د




## The species "pan-genome"

Proceedings of the National Academy of Sciences of the United States of America

Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial "pan-genome"


36



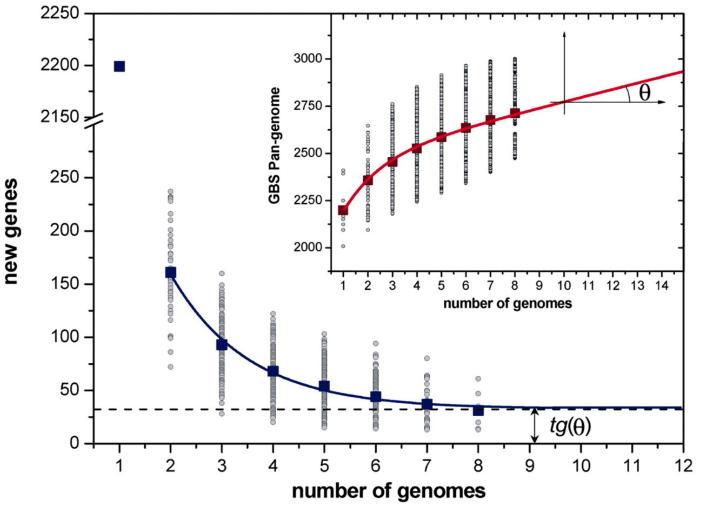
PNAS 2005;102;13950-13955; originally published online Sep 19, 2005; doi:10.1073/pnas.0506758102

Fig. 2. GBS core genome





Tettelin et al. (2005) Proc. Natl. Acad. Sci. USA 102, 13950-13955




3%

UNIVERSITEIT GENT

1. Id.

Fig. 3. GBS pan-genome Open pan-genome



Tettelin et al. (2005) Proc. Natl. Acad. Sci. USA 102, 13950-13955



الم الم

11111

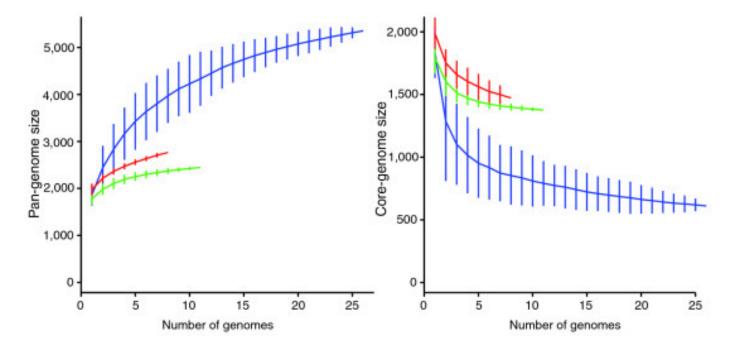
UNIVERSITEIT GENT

il sut.



## Lefébure and Stanhope 2007 Genome Biol. 8: R71

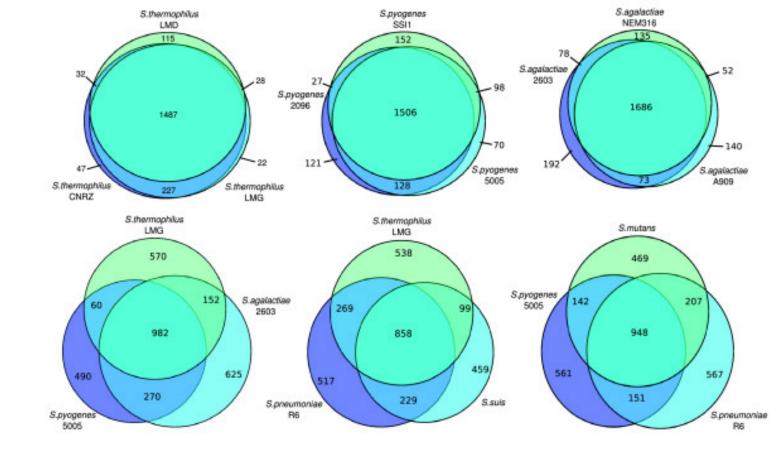
- 26 Streptococcus genomes:
  - 11 S. pyogenes
  - 8 S. agalactiae
  - 2 *S. pneumoniae*
  - 1 *S. mutans*
  - 3 S. thermophilus




いっ

– 1 *S. suis* 

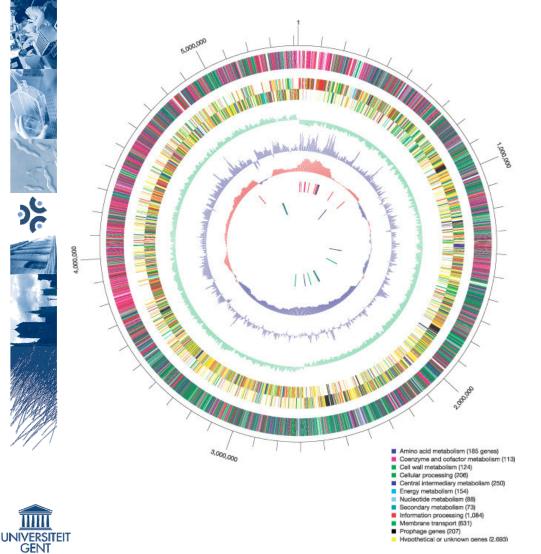







ぷ

Accumulation curves for the total number of genes (left) or the number of genes in common (right) given a number of genomes analyzed for the different species of <u>Streptococcus</u> (in blue), the different strains of *S. agalactiae* (in red) and *S. pyogenes* (in green). The vertical bars correspond to standard deviations after repeating one hundred random input orders of the genomes (Lefébure and Stanhope 2007 Genome Biol. 8: R71)






った

-

 Venn diagram for six sets of three taxa. Above are taxa of the same species and below are taxa of different species. The surfaces are approximately proportional to the number of genes (Lefébure and Stanhope 2007 Genome Biol. 8: R71)



 The large core set of genes (75–80%) conserved between *B. cereus* ATCC 14579 and *B. anthracis* A2012 could have been inherited from a common ancestor (Ivanova et al. 2003 Nature 423, 87-91)

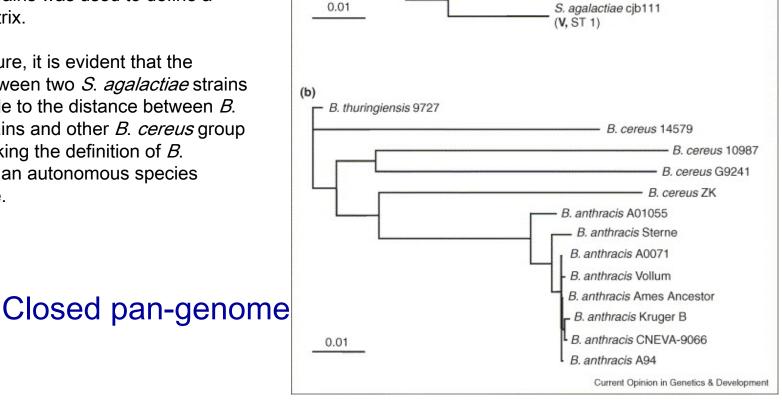



Figure 3. Dendrograms of the eight Streptococcus agalactiae (a) and thirteen *B. cereus* group (b) genomes. The fraction of genes of one strain that is not shared with other strains was used to define a distance matrix.

(a)

From the figure, it is evident that the distance between two S. agalactiae strains is comparable to the distance between *B*. anthracis stains and other B. cereus group species, making the definition of B. anthracis as an autonomous species questionable.





S. agalactiae 2603 (V, ST 110)

S. agalactiae 18rs21

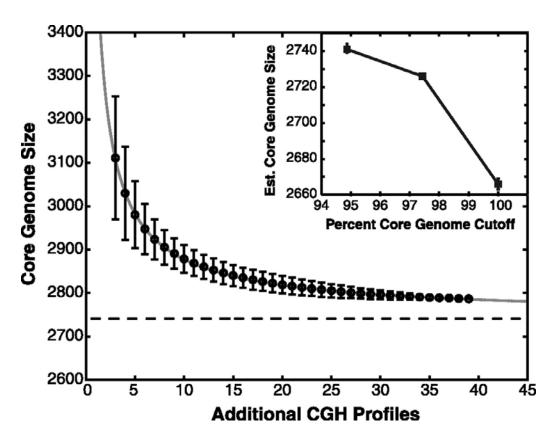
S. agalactiaeh 36b

(Ib, ST 6)

S. agalactiae a909

(la, ST 7)

S. agalactiae

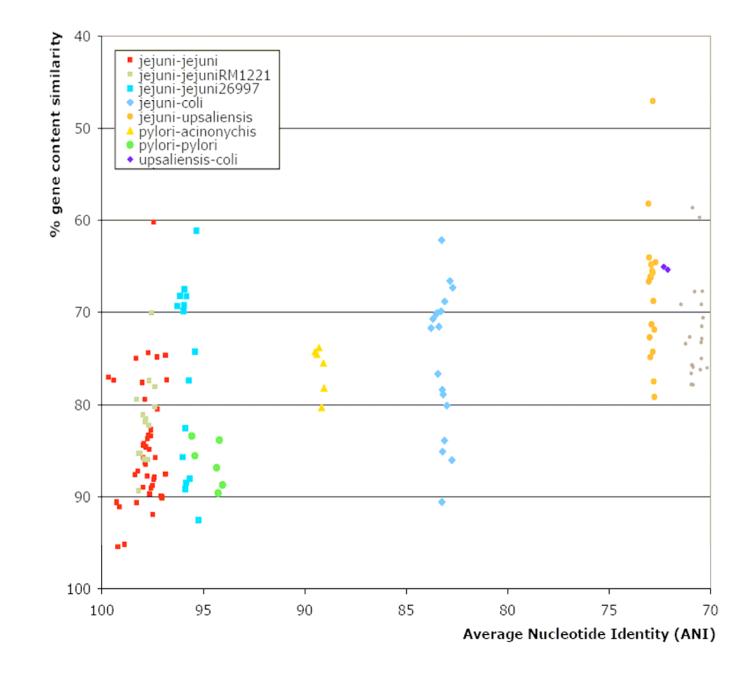

**NEM316** 

(III,ST 23)

(II, ST 19) S. agalactiae 515 (la, ST 23)

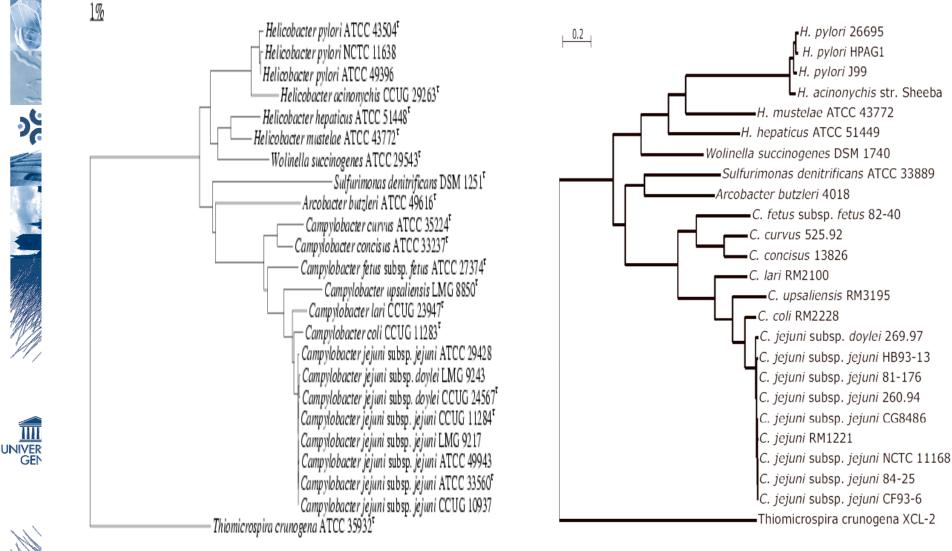
S. agalactiae coh1 (III, ST 17)





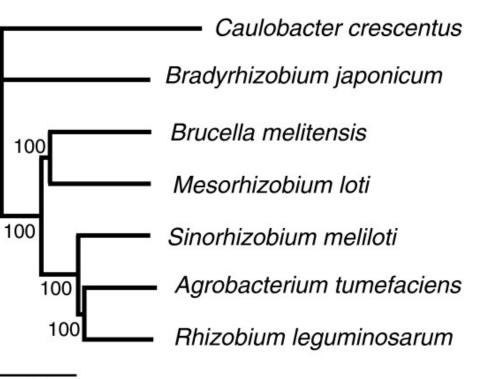

いで

 FIG. 2. Estimation of *Vibrio cholerae* core genome size by regression analysis. Open circles with 95% confidence limits represent the mean number of core genes with increasing numbers of genomes sampled for 10,000 random permutations of sampling order. A power law regression fit [y = a x ( b) + c] with an *R*-squared value of 0.9998 is included. Regression coefficients with 95% confidence limits (CL) are as follows: a, 906.1 (CL, 894.1, 918.0); b, –0.8215 (CL, –0.8348, –0.8083); and c, 2,741 (CL, 2,739, 2,744). The horizontal dashed line represents the extrapolated core genome size for *Vibrio cholerae*, which is equal to 2,741 genes for a threshold of genes shared among 95% of sampled genomes. (Inset) Closed squares show the reduction in projected core genome size with increased stringency for gene ubiquity from 95% to 100% of strains Keymer et al. 2007. AEM 73, 3705-3714












### 16S rRNA tree

Supertree based on 60 protein sequences<sup>32</sup>



0.1



いで

- Phylogeny of completely sequenced genomes of selected αproteobacteria. The phylogeny is based on the concatenated sequences of 648 orthologous proteins. Neighbor-Joining method with % bootstrap support indicated. Scale indicates substitutions (Young et al. 2006. Genome Biol. 2006; 7(4): R34)
- Overall, a phylogeny based on all of these 648 proteins (Figure 7) is consistent with the species relationships inferred from 16S ribosomal RNA, in which the closest relative of *R. leguminosarum* is *A. tumefaciens*, followed by *S. meliloti*, and then *M. loti*. However, many individual proteins actually support different phylogenetic relationships.



616–621 Nucleic Acids Research, 2005, Vol. 33, No. 2 doi:10.1093/nar/gki181

## Measuring genome conservation across taxa: divided strains and united kingdoms

#### Victor Kunin, Dag Ahren, Leon Goldovsky, Paul Janssen<sup>1</sup> and Christos A. Ouzounis\*

Computational Genomics Group, The European Bioinformatics Institute EMBL Cambridge Outstation, Cambridge CB10 1SD, UK and <sup>1</sup>Laboratory of Microbiology, Belgian Nuclear Research Centre SCK/CEN, Boeretang 200, B-2400-MOL, Belgium



った



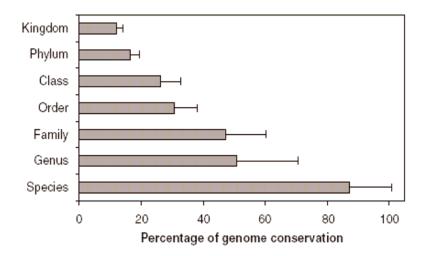



Figure 3. Genome conservation within bacterial taxonomic ranks. Error bars mark standard deviations. See text for discussion, genome conservation computed using D1 normalization (see Materials and Methods).



## Now that we have access to wholegenome sequences: what do they tell us?

 Some basic taxonomic parameters are being confirmed: high DNA-DNA hybridisation levels and highly similar 16S rRNA gene sequences are reflected in the core genome content

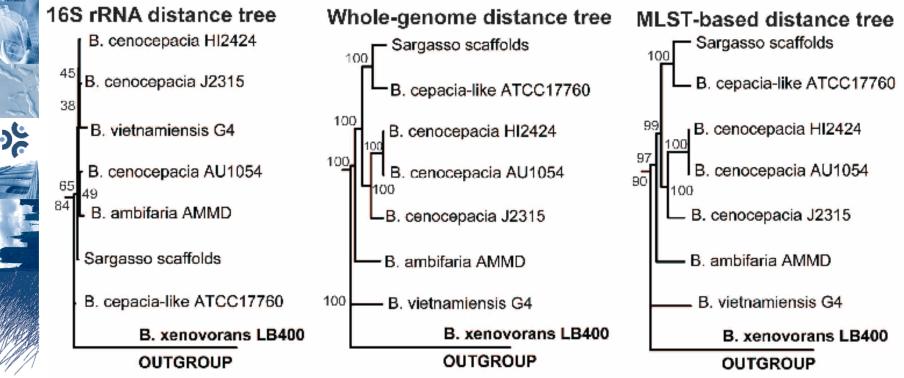


<u>ې</u>د





## Lack of throughput capacity???




った

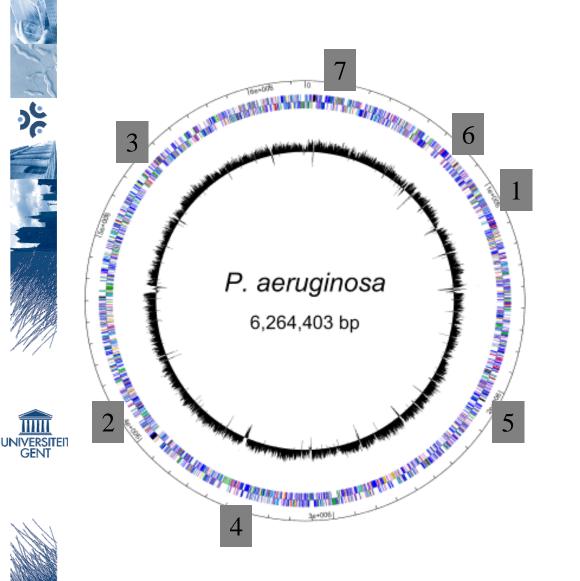


#### (K. Konstantinidis, unpublished)

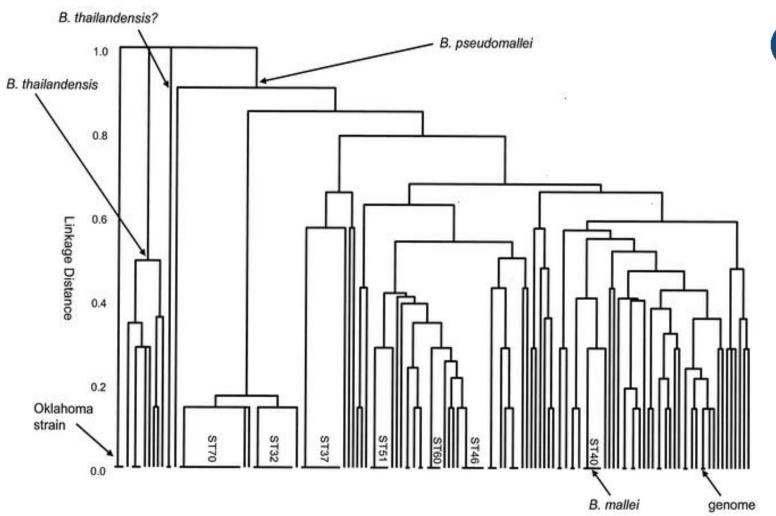




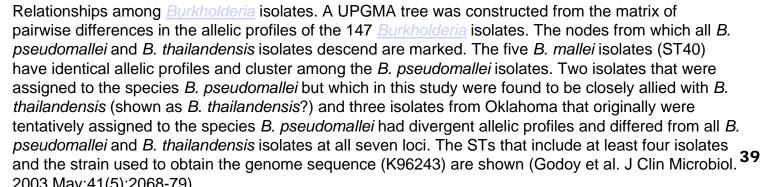



**16S rRNA tree**: DnaDist (Phylip package) of full-length 16S rRNA genes aligned with Clustalw. Nodes on the nodes denote statistical support by 500 bootstrap replicates.

Whole-genome-tree: Dnadist (phylip Package) of concatenated alignments (with Clustalw) of the 2,183 core genes. Nodes on the nodes denote statistical support by 100 bootstrap replicates.


**MLST tree:** DnaDist (Phylip package) of concatenated alignments (with Clustalw) of full-length RecA, GyrB, LepA, PhaB, TrpB, GtlB, GyrB. Nodes on the nodes denote statistical support by 500 bootstrap replicates.

- Konstantinidis et al., 2006. Towards a more robust assessment of intraspecies diversity using fewer genetic markers. AEM 72:7286-93

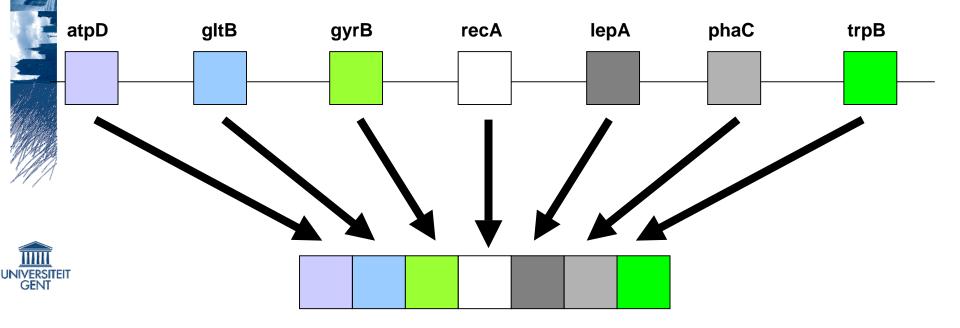

### **Selection of Seven Loci**



- Acetyl-coenzyme A synthetase (acsA)
- GMP synthase (guaA)
- DNA mismatch repair protein (mutL)
- NADH dehydrogenase I chain C,D (nuoD)
- Phosphoenolpyruvate synthase (ppsA)
- Anthralite synthetase component I (trpE)
- Shikimate dehydrogenase (aroE)



#### FIG 2.



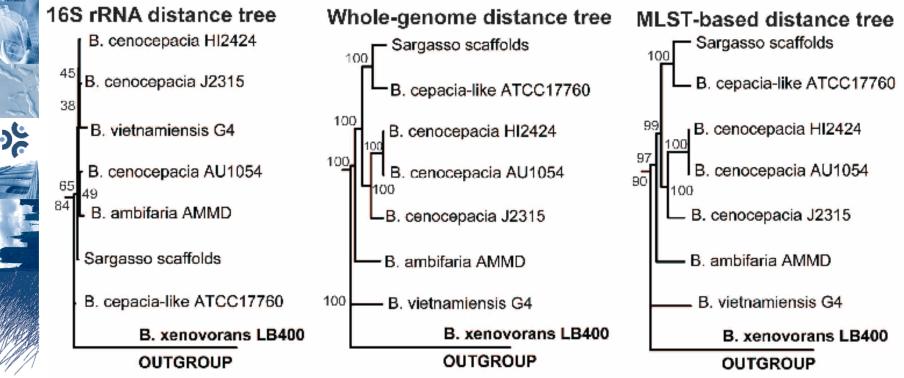

いた



#### **Concatenation**

The sequences of the seven loci are put end to end to form one large sequence which can be used in base pair comparisons.






<u>ې</u>د

c.g.dowson@warwick.ac.uk adam.baldwin@warwick.ac.uk

#### (K. Konstantinidis, unpublished)





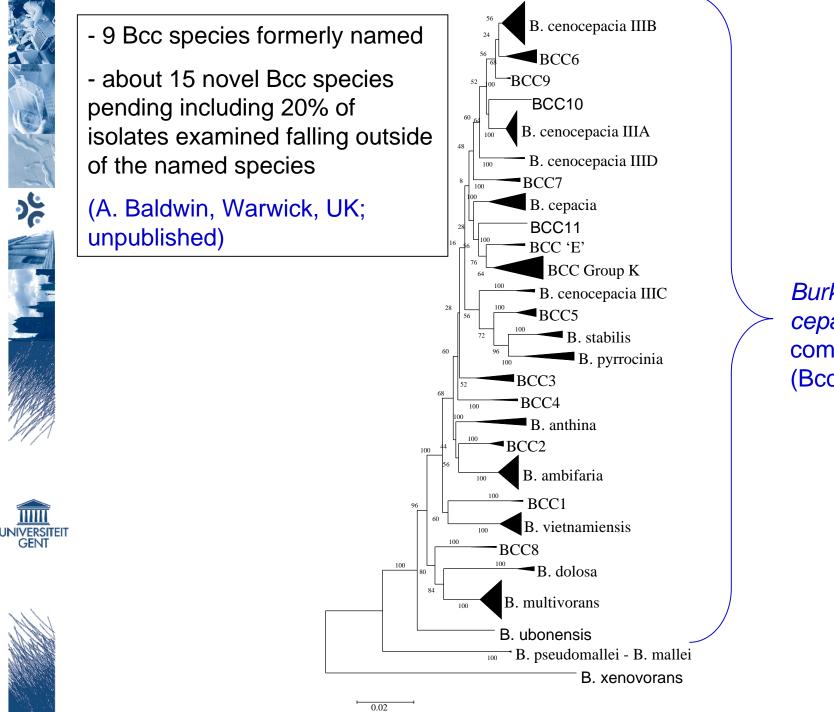


**16S rRNA tree**: DnaDist (Phylip package) of full-length 16S rRNA genes aligned with Clustalw. Nodes on the nodes denote statistical support by 500 bootstrap replicates.

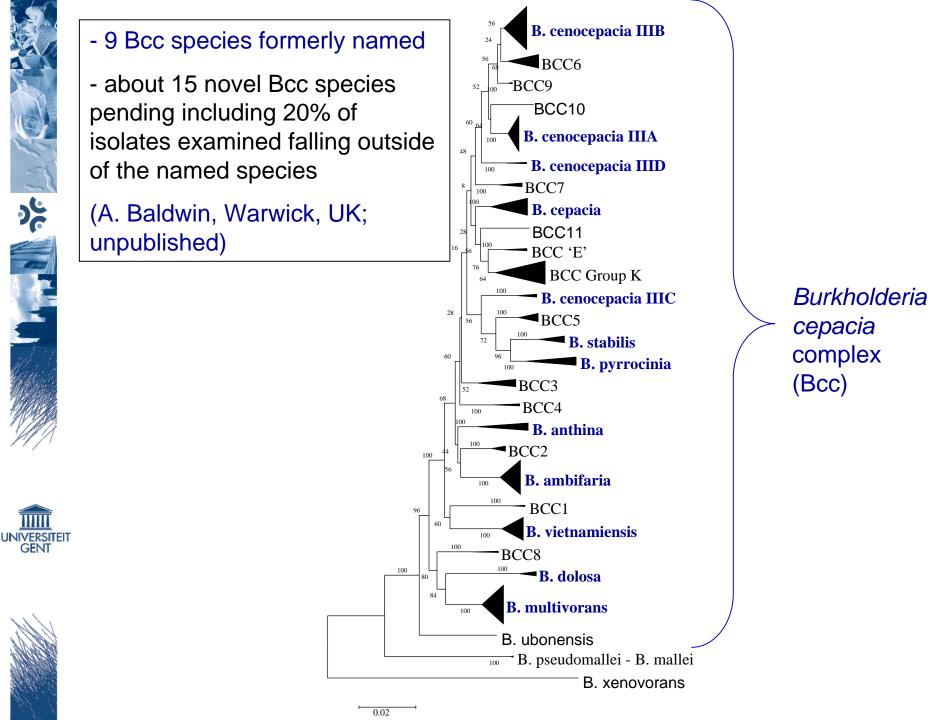
Whole-genome-tree: Dnadist (phylip Package) of concatenated alignments (with Clustalw) of the 2,183 core genes. Nodes on the nodes denote statistical support by 100 bootstrap replicates.

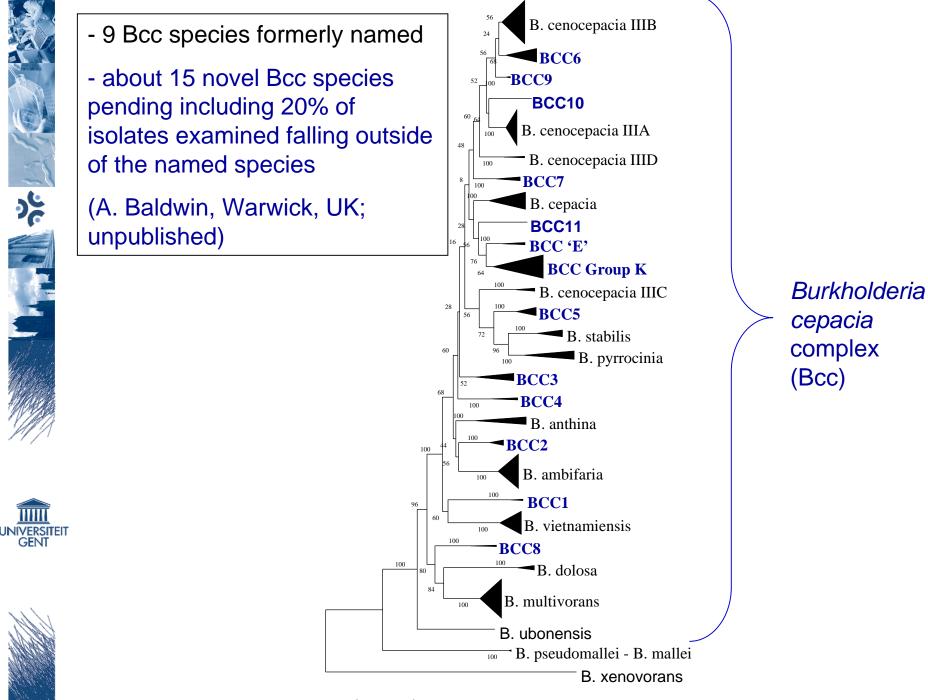
**MLST tree:** DnaDist (Phylip package) of concatenated alignments (with Clustalw) of full-length RecA, GyrB, LepA, PhaB, TrpB, GtlB, GyrB. Nodes on the nodes denote statistical support by 500 bootstrap replicates.

- Konstantinidis et al., 2006. Towards a more robust assessment of intraspecies diversity using fewer genetic markers. AEM 72:7286-93



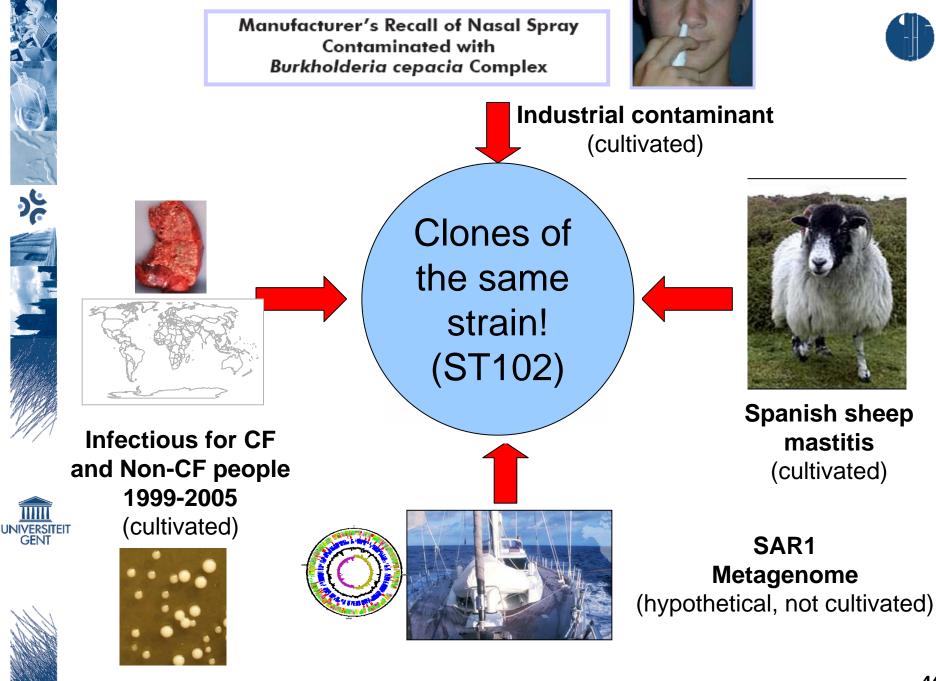

# MLST/A is attractive...


- Reflects whole genome content similarity
- Compared to DNA-DNA hybridisation and 16S rRNA gene sequencing: increased resolution
- Fast (large biodiversity to explore): increased throughput capacity
- Portable ("online taxonomy")




<u>ې</u>د




Burkholderia cepacia complex (Bcc)





0.02

cepacia complex





# Conclusion

- For two decades complete genome sequences have been considered the reference standard to determine phylogeny and taxonomy
- In spite of genome evolution, lateral gene transfer and recombination, genomes contain substantial information that seems mainly inherited vertically: the core genome
- The core genome varies in size between species but its total content is the most likely reference material for future genome based species definitions



 Sequence information as derived from shared core gene or protein sequences can be used to reconstruct organismal phylogeny and reflects 16S rRNA based schemes. It therefore has the potential to be used to construct an ordered scheme ('taxonomy') of prokaryotic diversity



 MLSA schemes have the potential to reflect relationships as imprinted in shared genome content and have a superior throughput capacity



## Acknowledgements

Dr. D. Gevers (UGent, Belgium & MIT, Cambridge, USA)
Prof. Dr. T. Coenye (UGent, Belgium)

http://www.asm.org/Academy/index.asp?bid=49252

"A classification that is of little use to microbiologists no matter how fine a scheme or who devised it, will soon be ignored or significantly modified"

Staley & Krieg, 1984



ېږ

