Future of Molecular Diagnostics in Clinical Microbiology

Copenhagen, April 18th, 2007

Gorm Lisby, MD PhD

Diagnostic Microbiology is changing!

Treat patients efficiently

Treat patients efficiently

Control the antimicrobial resistance

Prudent (restricted) use of antibiotics

Prudent (restricted) use of antibiotics

Fast and specific diagnostics

Prudent (restricted) use of antibiotics

Clinical impact of diagnostics

Fast and specific diagnostics

Diagnostic impact on treatment: ("window of opportunity")

- either VERY fast
- or VERY high impact

Diagnostic Challenges

- Reducing Mortality sepsis
- Point-Of-Care Testing
- Choice of Technology

Diagnostic Challenges

Reducing Mortality - sepsis

- · Point-of-Care Testing
- o Choice of Technology

Reducing Mortality

- Initiation of efficient antimicrobial therapy correlates to survival of severe infectious diseases – e.g. sepsis
- Current gold standard diagnostics are neither fast nor sensitive

Diagnostic tools in Sepsis

- Blood culture
- Molecular diagnostics
- Early sepsis markers
- Clinical decision software

Diagnostics in Sepsis Blood culture

- Gold standard
- Proven technology
- Advantage:
 - Species diagnostics
 - AST
- Disadvantage:
 - False negatives (e.g. antibiotics, difficult-to-grow...)
 - Time delay
 - Improvement?

Diagnostics in Sepsis Molecular Diagnostics: DNA

- Microbial DNA ("DNAemia"):
 - Live microorganisms
 - Dead microorganisms
 - Phagocytized microorganisms

Roche SeptiFast

Multicenter evaluation compared to blood culture (Bergamo, Copenhagen, Frankfurt, London, Lyon)

SeptiFast Panel

Gram (-)

Escherichia coliKlebsiella pneumoniae/oxytoca

- •Serratia marcescens
- •Enterobacter cloacae/aerogenes
- •Proteus mirabilis
- •Pseudomonas aeruginosa
- •Acinetobacter baumannii
- •Stenotrophomonas maltophilia

Gram (+)

- •Staphylococcus aureus
- •CoNS (S. epidermidis/haemolyt.)
- •Strep. pneumoniae
- •Strep. spp
- •Enterococcus faecium
- •Enterococcus faecalis

Fungi

Candida albicans, tropicalis & parapsilosis
Candida krusei & glabrata

•Aspergillus fumigatus

SeptiFast - all sites

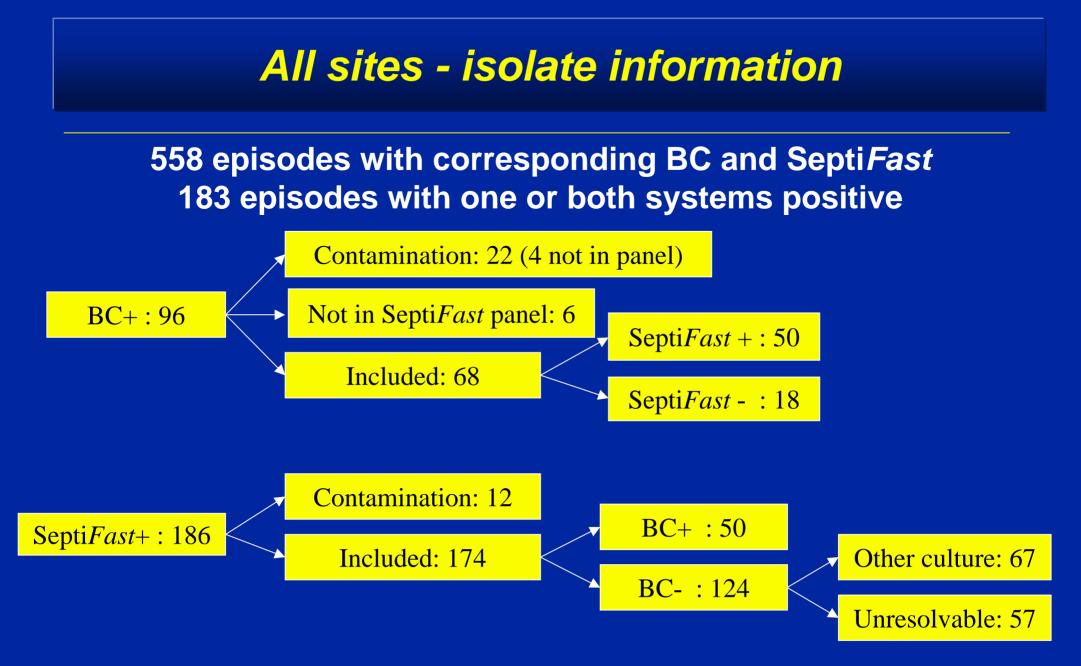
- 558 episodes (from 359 patients) with corresponding BC and SeptiFast
- 183 episodes with one or both systems positive
- 96 BC isolates in 96 episodes
- 186 SeptiFast isolates in 144 episodes
- 232 isolates in 183 episodes with combined testing

Low level contamination & Invalid PCR

57 episodes

2 episodes

10.6%


• SeptiFast: Low level contamination

- Coagulase negative Staphylococci
- Streptococci spp

- Total low level contamination rate

• Septi*Fast*: Invalid PCR

Negative Internal control (70 episodes)
 12.5%

Gorm Lisby

Pathogens detected

Pathogens	number of isolates detected by			
	SF only	BC only	Any system	Both systems
Total	124	24	198	50
Staphylococcus aureus	20	0	32	12
Escherichia coli	16	1	27	10
Candida albicans	13	2	17	2
Aspergillus fumigatus	12	0	12	0
Klebsiella pneumoniae / oxytoca	10	1	11	0
Stenotrophomonas maltophilia	10	0	12	2
Streptococcus spp.	9	2	16	5
Enterococcus faecium	8	4	14	2
Enterobacter aerogenes / cloacae	8	0	8	0
Enterococcus faecalis	7	2	14	5
Pseudomonas aeruginosa	5	1	6	0
Staphylococcus spp. (coagulase-negative)	2	1	11	8
Streptococcus pneumoniae	2	1	3	0
Candida parapsilosis	2	3	7	2
Serratia marcescens	0	0	1	1
Candida tropicalis	0	0	1	1
Other bacteria (not in PCR panel)	0	6	6	0

How do we define "the truth":

Do we trust all SeptiFast results ("SeptiFast" friendly truth)

or

Only the culture-confirmed SeptiFast positives ("Acceptable truth")

Gorm Lisby

One kind of truth

"SeptiFast friendly truth"

All positive uncontaminated Septi*Fast* (174) OR Septi*Fast* negative but BC positive (18) OR BC positive but not in Septi*Fast* panel (6)

> Sensitivity BC: 37.4% Sensitivity Septi*Fast*: 87.9%

Another kind of truth

"Acceptable truth"

Positive in both systems (50) OR Septi*Fast* positive but BC negative but confirmed by other culture (67) OR uncontaminated BC positive but Septi*Fast* negative OR BC positive but not in Septi*Fast* panel (24)

> Sensitivity BC: 52.5% Sensitivity Septi*Fast*: 83.0%

Diagnostics in Sepsis Molecular Diagnostics: DNA

- Healthy individuals do not contain microbial DNA in the bloodstream (above cut-off)
- Presence of microbial DNA in the blood:
 - Information concerning effectiveness of current (empiric) antibiotic therapy
 - Information regarding site of focus

Diagnostic Technology Molecular Sepsis Diagnostics – who will get it?

- Not all patients getting BC will get Molecular
- Subset of patients needs to be defined
 - Early sepsis markers
 - Clinical SIRS / sepsis
 - Computer based decision system
- Indications will later be expanded

Diagnostic Challenges

- Reducing Montality sepsis
- Point-of-Care Testing
- · Choice of Technology

Point-of-Care Testing

• A scary scenario?

• What will happen to my lab?

• How can I influence the development?

Point-of-Care Testing *Turn-Around-Time*

- Turn-Around-Time (TAT)
 - Can be directly influenced by the lab
- And what about total turn-around-time (T-TAT)?
 - Sampling (2 min -> 4 hrs)
 - Transport (10 min -> 24 hrs)
 - Laboratory TAT (24 hrs -> 2 min)
 - Action upon result at bedside (10 min -> never!)

Point-of-Care Testing

• Will dramatically improve *T*-TAT:

- No delay due to transport
- Impact on patient treatment is high
- No doubt important in future diagnostics, but.....

Point-of-Care Testing Problems

- No "professional" guidance
- Severe vs. "trivial" disease
 - ID/Clin micro vs. all MD's e.g. HIV vs. Strep A
- Hospital vs. out-patient clinic
- Sensitivity vs. specificity
 - Consequences of false positives- e.g. Chlamydia vs. Strep A
- AST and resistance
 - Interpretation e.g. UTI vs. Strep A
 - Surveillance of resistance?

Point-of-Care Testing Future

Important "piece of the diagnostic puzzle"

POC used wrong:

- Excessive use of antibiotics
- Increased resistance

• POC used right:

- Decreased T-TAT
- Controlled use of antibiotics
- Control of resistance

Point-of-Care Testing Future Organization

• Organization of Clinical Microbiology:

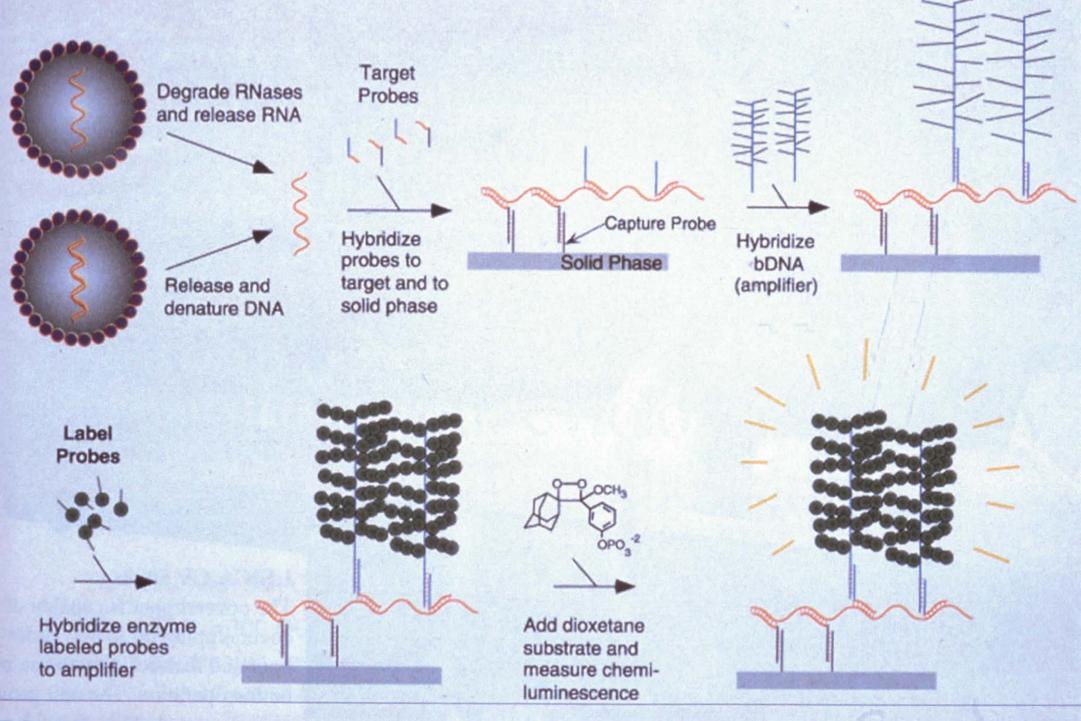
- Current: Referral \rightarrow Local
- Future: Referral \rightarrow Centralized \rightarrow Local \rightarrow POC

Diagnostic Challenges

- · Reducing Montality sepsis
- · Point-of-Care Testing
- Choice of Technology

Choice of Technology Molecular Target/Signal Amplification

Today: PCR Tomorrow: ?


Choice of Technology Molecular Target/Signal Amplification

• Why amplify target?

• Because we have to !

Choice of Technology Future of Amplification

Signal Amplification

Choice of Technology Future Platforms

- Lab-in-a-well
- Lab-on-a-bead
- Lab-in-a-tube
- Lab-on-a-chip

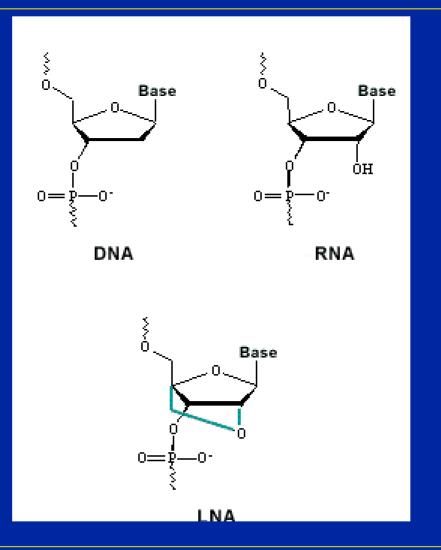
Choice of Technology Nucleic Acids

DNA or RNA or Artificial Nucleic Acids

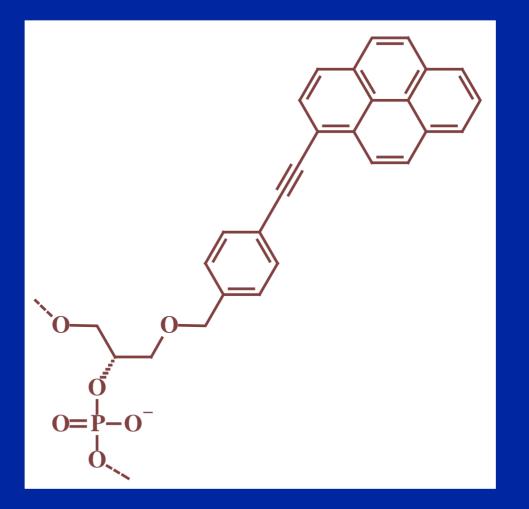
Choice of Technology Nucleic Acids - Applications

Conservation of genetic information (>3,500,000 yrs - success)
 Controlling genetic activity (>3,500,000 yrs - success)
 Diagnosis (approx 20 yrs - limited success)

• Treatment (not yet applied)


Choice of Technology Natural Nucleic Acids - Limitations

DNA double helix structure needs to uncoil DNA-RNA binding must be reversible


Choice of Technology Nucleic Acids - Future

Artificial Nucleic Acids (PNA, LNA, TINA, XNA)

Choice of Technology Nucleic Acids - Future

Choice of Technology Nucleic Acids - Future

Molecular Diagnostics in the Future Conclusions

- Will improve speed and sensitivity
- Will reduce mortality of severe infections
- Will advance Point-Of-Care testing
- Target amplification will have a limited time-slot
- Signal amplification will prevail
- Artificial NA's will revolutionize molecular testing

Molecular Diagnostics in the Future Conclusions

Crucial for fast and specific Microbiology Crucial for control of Antimicrobial Resistance